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In this thesis, I examine how smart systems benefit UAVs, and the tasks in

which they operate. The problem I address is to understand the tradeoffs

of certain smart systems over others in assisting UAV functionality.

The first approach explores the potential of distributed systems to assist

task development upon UAVs. We document the design of a development

and demonstration testbed conform to existing research. We describe a

procedural task-based architecture to complement an existing swarm stack.

We demonstrate that the runtime environment is capable of coordinating

multiple robots. A custom high level interface wraps the testbed for more

complex tasks, and this is demonstrated in a multi-drone choreography.

We investigate a Mixed Reality Interface for the Testbed, as well as methods

of drone Piloting using a Computer Vision algorithm. The utility of the

framework is demonstrated with two different tasks: quadrotor piloting

using computer vision and collision-free flight of multiple UAVs. Building

on existing frameworks like MediaPipe Hands, and Unity3D, we create

perception pipelines for semi-autonomous flight, and we proceed to evalu-

ate the response latency of these pipelines.

The second approach explores the potential of onboard systems to assist

the real-world deployment of UAVs. Applications are explored for UAVs

as Mobile Sensing Platforms, with high-sampling and high-precision

equipment. We design a carrier drone with Onboard Data Acquisition and

we put it to practice along standards defined by industrial practitioners. Two

payloads are tested in outdoor flight, for atmospheric data and vibration

data.We characterise the sensors used on these payloads. A vibration probe

is designed and our tests demonstrate its relevance in the field of mobile

sensing.
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Figure 1.1: Examples of mini-UAVs used

for remote sensing, from [339].

Figure 1.2: DJI Matrice 200 with onboard

gas detector (from DJI’s website, 2021)

Figure 1.3: Drone picture of coastline after

a storm.

Introduction 1
Drones, or unmanned aerial vehicles (UAVs), have been around since the

early 1900s. Drones can range from the size of airplanes to the size of

bumblebees (Figure 1.2). Originally used for military operations, they

became more widely used after about 2010 when electronic technology

got smaller, cheaper and more efficient, prices on cameras and sensors

dropped, and battery power improved [339][340]. Where once scientists

could only observe earth from above by using manned aircraft or satellites,

today they are expanding, developing and refining their research thanks

to drones [341] [342][339].

Depending on their mission, drones are equipped with different payloads

or equipment (Figure 1.2). Digital cameras can identify plants and animals,

and help create 3-D maps. Thermal cameras detect heat from living

creatures like animals or stressed plants, as well as from water [342].

Hyperspectral imaging identifies features of plants and water through

measuring reflected light and can interpret a wider range of wavelengths

than the human eye can see. LiDAR, which measures how long it takes

for an emitted pulse of light to reach a target and return to the sensor, can

be used to calculate the distance to an object and its height, which is used

for 3-D maps [342]. With this range of sensors, scientists and practitioners

can choose from a range of options to expand their research.

We see great growth in mobile mapping research, that is “the acquisition

of spatiotemporal phenomena by using a mobile multi-sensor platform”

[343]. This field of research includes remote sensing [344] the acquisition

of information about an object or phenomenon without making physical

contact with the object, as well as various contact-based techniques [345]

for the acquisition of information in direct contact with the object.

Inspection and Data Gathering is an area of scientific study that is

gradually adopting drones. For instance, the Sea Level and Coastal

Changes group at MARUM (University of Bremen) [346] studies coastal

erosion, mangrove communities as well as the distribution of corals and

the death of shallow corals. Prior to drones, the typical thing to do is

to put a GPS on your backpack and walk along the beach to actually

measure points on the beach. Coastal areas change rapidly for example,

before and after a storm (Figure 1.3). Instead, The drones take many

pictures at short intervals, and repeat flights at short intervals can show

differences in conditions. A drone can cover the same area in less time

and get much higher resolution pictures. This demonstrates that these

tools are an ideal integration in a data gathering toolkits of researchers

and practitioners. As a result, the industrial usage of drones is growing

steadily.

All in all, applications for drones are crossing boundaries of science and

industry, with everything from aerial photography to package delivery

to disaster management benefiting from the technology. But before they

become commonplace, there are challenges to be solved to make them

reliable and safe.
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Drones are usually flown with a controller on the ground, and some form

of wireless communication (usually radio signals) between the operator

and the drone [339]. Since the remote pilot focuses on navigational

aspects, it restricts the range of flights of a single operator. A challenge

to drone flight is the amount of human involvement. [347] looks at the

capacity of the research team collecting data. Five provided information

regarding the human involvement in their experiments; four of which are

damage assessment. Pratt et al. [348] (2008) included four members in

their UAS operation crew: a pilot, a safety manager, a mission specialist

and a tether manager. Kruĳff et al. (2012) [349] applied the same team

structure as Pratt et al. (2008), less the tether manager. Murphy et al.

(2008) [350] discussed extensively the responsibility of each team member

in a UAS flight and recommended a crew of three: a pilot, a mission

specialist and a flight director.

In developing complex functionalities, the operator is focused on remote

piloting, or on manning the ground station. In so doing, the operation

requires further automation in order to give more flexibility to the

operator, and in their amount of involvement.

A window of opportunity for the quality and application possibilities

of industrial drones is the built-in sensor technology [346]. Sometimes

referred to as smart drones, additional monitoring systems can be in-

stalled between a drone’s flight control and smart sensors [351]. Ideally,

this allows for more efficient motors, better on board processors and

software, more accurate sensors, as seen in Figure 1.4, built-in safeguards,

networked together to enable coordination, collaboration and real time

data delivery, etc.

Figure 1.4: Generations of drone technology.

There are challenges to implementing smart sensors, which is the length

and difficulty of the development process. For instance, collision avoid-

ance is generally recognised as a complex process [352][353]. This com-

plexity can be attributed to the many different variables that factor in

based on the applications in which this technology is used. Collision

detection requires regular input of altitude, which is usually transmitted

by an onboard range sensor. Additionally, with a view of obstacle, the

drone can estimate. This is delegated to a camera or radio frequency

sensor. Furthermore, algorithms would be required to monitor a obstacles

relative to the moving drone, or detect if noise is an obstacle, which is

solved with finer state estimation techniques [354].
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Figure 1.5: A dedicated test-and-

demonstrate environment.

Figure 1.6: An environment for outdoor

deployments.

1.1 Problem Statement
In this thesis, I examine how smart systems benefit UAVs, and the tasks in

which they operate. The problem I address is to understand the tradeoffs

of certain smart systems over others in assisting UAV functionality.

What environments, and tools, can we put at disposition to accelerate the

development of specialised functionalities using drone equipment? What

functionalities are ideally developed in a research setting, as opposed to

an industrial one? Are there any functionalities which require specific

technological integrations? Should these functionalities be developed

before flight, or during flight? This last distinction is the basis for two

separate approaches: a dedicated test-and-demonstrate environment as

opposed to a ground station.

The first approach explores the potential of distributed systems to
assist task development upon UAVs.

In our first approach, we examine distributed systems, whereas multiple

systems coordinate to assist, and simplify tasks during development and

demonstration. This is a systemic approach that aims to interconnect

the available systems. For instance, smart sensors can control a drone’s

navigation path and monitor its flight. The operator’s interactions can

be guided by computer vision systems along with object detection and

collision avoidance programs. New forms of artificial intelligence or

algorithms can make them even more adaptable. We explore the ways in

which distributed systems can spare the practitioner from repetitive and

time-consuming tasks.

The second approach explores the potential of onboard systems to
assist the real-world deployment of UAVs.

In a second approach, we look more closely at the interplay between smart

systems, and the real-world deployment of a UAV. We investigate how a

drone’s design aids to gather multi-faceted data. Data acquisition systems

offer an opportunity to manage the data collection process. Specialised

navigation tasks offer other means of automating the data collection

process. The drone operator can examine the data gathered in real time,

and becomes involved as a data interpreter. We explore the ways in which

onboard systems can aid with the practitioner’s task.

1.2 Research Domains
This thesis is associated with three major fields of work: swarm en-

gineering, human drone interfaces and mobile sensing. These fields

take inspiration from a variety of other fields. Figure 1.7 shows several

domains that are explored in this thesis.

According to An Introduction to Swarm Robotics [355], swarm robotics

is an approach to collective robotics that takes inspiration from the

self-organized behaviors of social animals. Through simple rules and

local interactions, swarm robotics aims for robust, scalable and flexible

collective behaviors for the coordination of large numbers of robots.

In contrast, the term swarm engineering [356] describes the design of

predictable, controllable robot swarms with well-defined goals and the

ability to function under certain conditions. Swarm engineering focuses
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Figure 1.7: Research domains explored in this thesis.

mainly on concepts that could be relevant for real-world applications,

therefore shifting swarm robotics to engineering applications.

In The state-of-the-art of Human–drone interaction: A survey (2019), Dante

Tezza and Marvin Andujar define Human-Drone Interaction (HDI) as a

field of research that consists of understanding, designing and evaluating

drone systems for use by humans, and in contact with humans. This field

is similar to human-robot interaction (HRI), however, a drone’s unique

characteristic to freely fly in a 3D space, and unprecedented shape makes

human-drone interaction a research topic of its own. Researchers develop

control modalities and better understand means of communicating with

a drone.

We see great growth in mobile mapping research, that is “the acquisition

of spatiotemporal phenomena by using a mobile multi-sensor platform”

[343]. The UAV is a platform that greatly simplifies research. One such

field remote sensing, the acquisition of information about an object or

phenomenon without making physical contact with the object [344].

Recently, UAVs have enabled research towards contact sensing, for the

acquisition of information in direct contact with the object [345], on a

platform that serves for optimal sensor placement [345] [358].

1.3 Contributions
This list of contributions outlines each project in its respective field and

an overview of the approach used to evaluate it.

A Testbed Environment for Task Development

A Multi-Robot Management Layer

We motivate a smarter ecosystem for task development upon drones

by beginning with the infrastructure for new technologies and for pro-

totyping functionalities. A centralised swarm framework serves to set

up flight performance monitoring systems, a fundamental asset to the

development of robots and multi-robot groups [359]. A hover stability

test is a good measure of system performance since it requires quick

readjustments of the drone to counter natural disturbances during hover-

ing. In [360], Michał Waliszkiewicz et al. determine the performance of

their flight controller by comparing the attitude of the drone in relation

to the demanded null value of angular rotations. In this experiment, two

drones are required to hover at an input setpoint with minimal error. The
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Figure 1.8: Presentation video [362] of the

Gesture Recognition Pipeline

Figure 1.9: Video feeds of Mixed Reality

Setup. The setup is maintained as a Github

repository [367] and a presentation video

is available [368]

error over time is compared for the drones to better understand flight

stability.

A High Level Interface

A high level interface is an abstraction layer for development activities.

In order to simplify task development, and align with the thesis goals,

we develop a framework for high level interaction between the operator

and the functionalities of the testbed. A drone choreography is designed

as a live demonstration of the Testbed’s functionality. The experiment

data is accessible publicly [361].

Experimentations for Human-Drone Interfaces

A Gesture Controller for UAV Piloting

As of Nov. 2019, multiple gesture interfaces have been developed for

UAVs [363] [364], but are lacking in drone piloting. Realtime interfaces

for drone piloting are discouraged [357] due to high latency and low

control precision compared to other drone control modalities. As of Sept.

2021, the literature utilizing the Crazyflie nanodrone does not include

realtime streaming commands [365].

We put in place a demonstration for flight piloting in real-time using

the developed gesture interface. We present the workflow of real-time

gesture piloting pipeline and we evaluate it in terms of:

▶ System response time

▶ Accuracy of gesture recognition

Effective Gesture Recognition In order to evaluate gesture recognition

performance, [366] evaluates the false positive and negative rates of the

pose detection by manually identifying both the incorrectly recognised

gestures, and the unrecognised gestures. Similarly, we identify the false

positive and negative rates of the pose detection.

A Pipeline with minimal Response Time The system response time was

verified by applying a series of rapid maneuvers to register any significant

delays between the pilot’s commands and their execution by the flight

control system. Michał Waliszkiewicz et al. [360] choose to modify the

drone’s angle in a specified direction. This choice is arbitrary and the

changes in velocity are used in this case.The input was a demanded

velocity in a specified direction. The input was changed randomly by the

operator with hand movements. The output was a delay of the velocity

change in the drone. Finally, a system response time is determined by

averaging the response delays over the experiment.

A Mixed Reality Setup for Drone Development

The first objective of the simulated environment is to serve as a graphical

interface in order to develop tasks otherwise too difficult to deploy. The

priority of the virtual reality is therefore set on rendering capabilities,

and the ability to obtain camera streams from this environment. We

set up a virtual interface between real and virtual objects in real time.

This MR simulation consists of a network interface between a robotics

backend (ROS) and virtual environments (Unity3D). Similarly to [369],

the pipeline is then evaluated in terms of communication latency for two

separate scenarios.

▶ when transmitting parameters into the simulated environment
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.

Figure 1.10: Data Acquisition System

setup.

Figure 1.11: Field Scans

Figure 1.12: Footstep Detection with an

Onboard Accelerometer

Figure 1.13: Sensitivity Test: Experimental

Setup

▶ when transmitting parameters to the robotics backend.

The latency of data transmission into the virtual setup

This latency is evaluated by determining the time-delay between the

detection of drone poses from the robotics backend and the time they

are received in the virtual setup. This approach is also taken in [369],

who observe that on average a 400 ms time delay occurred in their MR

simulation.

The latency of data transmission out of the virtual setup

This latency is evaluated by determining the time-delay between the

detection of an event from the virtual setup, and the time that they cause a

state change in the drone’s task manager. This approach deviates slightly

from [369], who measure the moment the information is displayed on

their graphical interface. Both approaches measure the response time

before the event-data has its intended effect.

In Vivo Deployment for Industrial Environments

Optimal Payload Shock Absorption for Optimised Payload Transport

We test the vibration sensitivity of the payload to remove any parasitic

vibrations. We compare the shock absorption of two payloads subject

to different amounts of damping material. This is done by developing a

vibration profile as direct input from two accelerometers during drone

flight and increasing the volume of damping material.

Monitoring Environment Conditions with a Drone Fieldscan Solution

We develop a drone solution for sampling environment conditions during

a drone flight (Figure 1.11). Sunlit and shaded regions of an open field

were scanned for relative humidity, luminosity and ambient temperature.

The accuracy of the data setup was verified by examining the contrasts

in atmospheric conditions between sunlit and shaded regions of an open

field. The dataset [370] and presentation video [371] are available.

Detection of Footsteps with a Drone Vibration Solution

Structural inspections include seismic equipment upon UAVs [358], yet

there lacks any mention of vibration probes on UAVs. We develop a

drone prototype for acquiring vibration data after flying, landing, and

recording under various scenarios (Figure 1.12).

We test the validity of a drone vibration solution by using real-world

human walking experiments on a concrete floor structure. This approach

is also taken in Jonathon Fagert et al. [372] (2021), who test an onboard

UAV sensing module consisting of a series of geophones.

Determining the Sensitivity of the Drone Vibration Solution

We characterise the sensitivity of the drone probe solution with a si-

nusoidal sweep. A vibration shaker performs a sinusoidal sweep in a

controlled setting.
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1.4 Overview of the Thesis
Chapter 2: A Testbed Environment for Task Development

In line with the thesis goal, we seek to better understand how distributed

systems can offer smart assistance to multi-robot development. We ex-

plore research and techniques designed to coordinate multiple robots.

We document the design of a development and demonstration testbed

conform to existing research. We describe a procedural task-based archi-

tecture to complement an existing swarm stack. We demonstrate that

the runtime environment is capable of coordinating multiple robots. A

custom high level interface wraps the testbed towards more complex

tasks, and it is demonstrated in a multi-drone choreography.

Chapter 3: Experimentations for Human-Drone Interfaces

In line with the thesis goal, we look at two types of smart systems that

enhance the interactions between humans and drones. The first allows the

human to pilot a drone through a gesture interface. The second looks to

a virtual interface as a training ground for a real drone to avoid a virtual

object. A distributed system is used to to communicate and coordinate

these pipelines by passing messages to one another from any system. To

better understand their tradeoffs, the distributed systems are explored

and evaluated in this chapter. We investigate a Mixed Reality Interface

for the Testbed, as well as methods of drone Piloting using a Computer

Vision algorithm. The utility of the framework is demonstrated by using

it for two different tasks: quadrotor piloting using computer vision and

collision-free flight of multiple UAVs. Building on existing frameworks

like MediaPipe Hands, and Unity3D, we create perception pipelines for

semi-autonomous flight, and we proceed to evaluate the response latency

of these pipelines.

Chapter 4: In Vivo Deployment for Industrial Environments

In line with the thesis goal, we pay attention to the interplay between

smart systems, and the real-world deployment of a UAV. The carrier drone

aids in streamlining the data collection process, by automating different

fly-by procedures, safeguards, and scheduling the data collection. Two

payloads are tested in outdoor flight, for atmospheric data and vibration

data, and the sensors used in these tests are evaluated. In this way,

onboard systems can aid with the practitioner’s task.

Applications are explored for UAVs as Mobile Sensing Platforms, with

high-sampling and high-precision equipment. We design a carrier drone

and Onboard Data Acquisition systems and we put them to practice

along standards defined by industrial practitioners. Two payloads are

tested in outdoor flight, for atmospheric data and vibration data, and

we characterise the sensors used for these tests. A vibration probe is

designed and our tests demonstrate its relevance in the field of mobile

sensing.
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2.1 Introduction
According to An Introduction to Swarm Robotics [355], swarm robotics is

an approach to collective robotics that takes inspiration from the self-

organized behaviors of social animals. Through simple rules and local

interactions, swarm robotics aims for robust, scalable and flexible collec-

tive behaviors for the coordination of large numbers of robots. In contrast,

the term swarm engineering [356] describes the design of predictable,

controllable robot swarms with well-defined goals and the ability to

function under certain conditions. Swarm engineering focuses mainly

on concepts that could be relevant for real-world applications, there-

fore shifting swarm robotics to engineering applications. We motivate a

smarter ecosystem for task development upon drones by beginning with

the infrastructure for new technologies and for prototyping functionali-

ties. A centralised swarm framework serves to set up flight performance

monitoring systems, a fundamental asset to the development of robots

and multi-robot groups [359].

Multi-robot systems and swarms of unmanned aerial vehicles (UAVs) in

particular have many practical applications. Sensors and measurements for
Unmanned Systems: An overview [340] from March 2021 shows applications

as diverse as surveillance and monitoring, inventory management, search

and rescue, or in the entertainment industry. Swarm intelligence has,

by definition, a distributed nature. Yet performing experiments in truly

distributed systems is not always possible, as much of the underlying

ecosystem employed requires some sort of central control. Indeed, in

experimental proofs of concept, most research relies on more traditional

connectivity solutions and centralized approaches [359][373].

In recent years there have been significant advancements in this research

field. However, very rarely do UAV swarms leave the controlled and safe

environment of laboratories, and when they do it is for short-duration

experiments. The current use of swarms is generally based on custom,

centralized solutions, in environments with reliable communication [373].

There remains large challenges to reliable flight of UAVs: the reliability of

software, the limits on the hardware, test and validation of new elements

on pre-existing systems [359]. A further challenge concerns multi-robot

functionality. Current UAVs have very limited functionality for multi-

robot coordination. Market drones are too limited for swarm research,

as they only supports a single point-to-point link between a program

and the drone, thus, a program can only communicate with a single

drone.

In line with the thesis goal, we seek to better understand how dis-

tributed systems can offer smart assistance to multi-robot development.

We explore research and techniques designed to coordinate multiple

robots.
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Figure 2.1: An example of drones tracked

by two motion capture cameras.

Figure 2.2: The Crazyflie 2.1 miniature

quadcopter.

2.2 Related Work
In this section, we examine how researchers tackle the challenge of

swarm engineering in the past. Prior work exists in a variety of drone

laboratories [374] [375]. Drones Spatial Localization, UAV Architectures

and UAV Swarm Frameworks require tradeoffs.

2.2.1 UAV Spatial Localization
The Flight of UAVs, as with any robotic system, requires accurate posi-

tioning. However, a drone suffers from cumulative drift in position data

[351]. In order to achieve autonomous flight, a drone will need to know

if it is following a trajectory correctly. A localization technology allows

for this centimeter level accuracy.

It is by using highly precise equipment, that UAVs can have highly precise

state estimation. This setup includes the selection of onboard positioning

systems as well as external positioning solutions. We focus on optical

motion capture coupled with algorithms for state estimation primarily

a set of technologies commonly used by UAV laboratories[376] [377]

[375]:.

The high level of precision from a motion capture system allows us to

synchronously hover multiple UAVs. The tracker precision can reach

sub-millimeter accuracy, and drones are hovered at a precision of a few

centimeters.

2.2.2 UAV Architectures
UAVs such as AscTec Pelican, Parrot AR.Drone, and Erle-Copter are

other examples of UAVs commonly used in the literature. These MAVs

have Software Development Kits (SDK) that enable applications from

third-party developers to communicate with the drones. However, both

SDKs are too limited for swarm research, as they only supports a single

point-to-point link between a program and the drone, thus, a program

can only communicate with a single drone.

In comparison, the Crazyflie packages the full robotic stack. This robotic

stack includes its own state estimator, control architecture and trajectory

follower, which work out of the box. FreeRTOS handles the scheduling

of processes and control the flight calculations. The Crazyflie contains

a 32-bit, 168MHz ARM microcontroller with floating-point unit that is

capable of significant onboard computation. The FreeRTOS firmware is

opensource and modifiable.

The Crazyflie’s small size makes it suitable for indoor flight in dense

formations. As a result, it has been used widely in research. As of 2021,

this drone is used to validate research: from new algorithms for agile

flight [377] to drone swarm research [376].

2.2.3 UAV Swarm Frameworks
Unmanned Aerial Vehicle (UAV) swarms have been used indoors for

formation flight and collaborative behaviors, outdoors to demonstrate

swarming algorithms, and in the media for artistic shows. According
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to Inaki Navarro and Fernando Matia [355], The group of robots has

some special characteristics, which are found in swarms of insects, that

is, decentralised control, lack of synchronisation, simple and (quasi)

identical members. In this section, we explore the requirements placed

on the software framework for interacting with a robot swarm.

[378] Carlo Pinciroli, Adam Lee-Brown, and Giovanni Beltrame discuss

the key requirements a successful programming language for swarm

robotics must meet. According to them, the level of abstraction need be

adapted to the task at hand. The complexity of concentrating on individual

robots and their interactions, i.e., a bottom-up approach, increases steeply

with the size of the swarm. Conversely, a purely top-down approach, i.e.,

focused on the behaviour of the swarm as a whole, might lack expressive

power to fine-tune specific robot behaviors. The runtime platform of

the language must ensure acceptable levels of scalability (for increasing

swarm sizes) and robustness (in case of temporary communication

issues).

[375] Sergei Lupashin et al. present The Flying Machine Arena.

This was put in place in 2014 with the goal of becoming a "demo-

and-development" arena. They include both single and multi-robot

experiments. One key element of their work is that the UAV swarm can be

heterogeneous. Additionally, the position controller runs offboard, that

is, the UAVs all rely on a companion computer to position themselves.

The additional computational power is used for a latency compensation

algorithm to improve accuracy for high-speed flights. Despite this, the

framework remains robust: swarms of up to 5 UAVs are flown on a regular

basis.

[376] Thai Phan, Wolfgang Honig, and Nora Ayanian define a system

architecture for a large swarm of miniature quadcopters flying in dense

formation indoors. The main challenges in swarm robotics are addressed

in this framework, namely by reducing communication latency to 26ms.

This is done in major part via the structure of messages broadcasted to

the UAV. Preiss et al. [376] use a programmable UAV with an onboard

position controller, making the system more robust to communication

packet drops. With this method, a swarm of 49 Crazyflies have been

flown using 3 radios. As a result, the drone swarm framework allows for

robotics developers to send commands to drones in a fleet. A scalable

and robust run-time platform is, in this way, a key element for real-world

deployment of swarm behaviors.

2.2.4 UAV Software and Middleware
UAVs have a long tradition of being controlled with the Robotic Operating

System. ROS is a meta-operating system designed for the construction of

distributed systems. It provides a set of extensible tools for managing

distributed robotic applications. The main goals of ROS are package

management, hardware abstraction, low-level device control, message

exchange between processes, and implementation of several functional-

ities. As a result, there are many ROS packages devoted to controlling

such UAVs as individuals.

However, using multiple UAVs creates entirely new challenges that such

packages cannot address. These new challenges include, but are not lim-
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Figure 2.3: Overview of the Crazyswarm

Control Loop, as per the Crazyswarm offi-

cial documentation (August 2021) [379]

ited to, the physical space required to operate the robots, the interference

of sensors and network communication, and safety requirements. In

[376], Thai Phan, Wolfgang Honig, and Nora Ayanian thus motivates

the use of a hardware abstraction layer on top of the Crazyflie. This

abstraction layer, in the form of a ROS layer, is only used on the PC

controlling one or more Crazyflies. The ROS driver sends the data to

the different quadcopters using the protocol defined in the Crazyflie

firmware.

[376] Thai Phan, Wolfgang Honig, and Nora Ayanian demonstrates

interoperability between the PC and UAV components. The crazyflie_ros
framework helps wrap CRTP within a ROS framework, which is useful for

scenarios of hovering and waypoint following from a single robot to the

more complex multi-UAV case. It provides not only standard operating

system services (hardware abstraction, contention management, process

management), but also high-level functionalities (asynchronous and

synchronous calls, centralised database, a robot configuration system,

etc.). Additionally, this includes command-line tools and a GUI for mass

rebooting, firmware updates, firmware version query, and battery voltage

checks over the radio.

[380] James A. Preiss* et al. furthers this work by offering all

the necessary components for controlling multiple drones remotely, by

relating the drone flight controller of the Crazyflie to a set of controllers

on the PC, but also by offering ways to send trajectories to the drones

in realtime. Crazyswarm attempts to couple an external motion capture

technology like Optitrack with the rest of a drone’s control loop: knowing

its position, the drone will be able to generate and follow a trajectory

more precisely. When viewing a single body, motion capture certainly

has sub-millimeter accuracy. However, as the number of drones increases,

there are two limiting factors to the reliability of the control loop: the

first is recognition of the drones by the optical capture system, and

the second is low communication bandwidth. Multiple algorithms are

therefore incorporated into this framework to mitigate the effects of these

processes.

[381] Rihab Chaari et al. design a distributed cloud robotic ar-

chitecture for computation offloading based on Kafka middleware as

messaging broker. Empowering robots with cloud computing comes with

a fundamental tradeoff. Offloading the execution of a computationally

intensive algorithm to the cloud can reduce resource utilization, includ-

ing CPU, memory, and the battery. However, this comes with a cost:

communicating with cloud resources over a congested network increases

latency and can lead to delay for real-time applications. Rihab Chaari
et al. showcase that an offloading decision need not reduce the overall

execution time of the application.
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2.3 System Overview

2.3.1 Functionality
The testbed is designed according to four functional requirements.

1. Managing the interface with drone firmware.

2. Localizing the drones in a Flight Arena.

3. Rendering the drones in a simulated environment.

4. Managing the flow of offboard code for each drone.

These elements occur separately and simultaneously. They manage

individual drones asynchronously from one another, a key element in

swarm engineering. Each of these requirements is fulfilled respectively

by Crazyswarm, Optitrack, Unity and the Task Manager. Each of these

are explored in turn in this chaper.

2.3.2 Network Architecture
Figure 2.4 gives a brief overview of the data interfaces between the four

main components of this architecture.

Figure 2.4: Overview of Network Interfaces.

The data flow in the Flight Arena is as follows: vehicle/object pose

measurements are provided by a motion capture system to software

modules running on companion computers running consumer operating

systems. Within task-specific modules ("user code") and the Crazyflie

communication channels, estimation and control pipelines produce

vehicle motion commands. The appropriate commands are transmitted to

the vehicles. Onboard the vehicles, high-frequency controllers track these

commands using on-board inertial sensors in feedback. All intermodule

communication is via multicast UDP and the vehicles commands are

sent over a dedicated wireless channel.

2.3.3 Chapter Structure
The drone testbed is comprised of a hardware and a software environ-

ment. First, Section 2.3.2 presents the Network Interfaces. The Hardware

Environment consists of the physical Flight Arena. Section 2.4 presents

this Arena, the drone model and the localization system. Section 2.5 then

touches on swarm management followed by task management.
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Figure 2.5: The Crazyflie 2.1 miniature

quadcopter with four motion-capture

markers, expansion boards (not visible),

and battery.

Figure 2.6: The Motion Capture Table, net

and Flex 13 cameras positioned above the

platform.

Figure 2.7: Protective cork layer.

2.4 Hardware Environment

2.4.1 Drone Selection Process
Several drones were compared using custom criteria for drone develop-

ment. These custom criteria are based on ease of use and programmability.

The Dimensions criterion aims to minimize the drone size and weight.

The Reconfigurable criterion investigates the modularity of the hardware

layout. The Programmable criterion looks at the available interfaces for

communicating with the firmware. The Autonomous Flight criterion

looks at the compatibility of state estimation and trajectory planning

algorithms.

Table 2.1: Drone Selection Matrix.

Criteria Snapdragon Bitcraze Tello Custom Flight

Flight Pro Crazyflie Drone Controller

Dimensions •◦◦◦◦ ••••• ••••◦ ••◦◦◦
Reconfigurable ••••◦ ••••◦ •◦◦◦◦ ••••◦
Programmable •••◦◦ ••••◦ •••◦◦ ••◦◦◦
Autonomous Flight •••◦◦ ••••◦ ••••◦ •◦◦◦◦
Selection ✗ ✓ ✗ ✗

The Crazyflie Drone has several advantages over other drones.

▶ Autonomous Flight. State estimation and trajectory planning are

managed by the Crazyflie firmware. The operating procedure is

simplified to sending setpoint commands from a remote PC. [382]

▶ Programmability. At the moment of writing, there are two APIs

known to send high-level commands to the drone. [382]

▶ Dimensions. Due to our space constraints, a small, light drone

is preferable. Our payload of motion-capture markers brings the

Crazyflie’s mass to 33 grams.

▶ Reconfigurability. The Crazyflie is easily assembled and maintain-

able. It is compatible with a range of sensor modules for different

activities. [382]

2.4.2 Flight Arena and Spatial Localization
The Flight Area (Figure 2.6) measures 3 x 2 meters, with a table-to-ceiling

distance of 1.3m. In order to dampen the impact of falling drones, the

table is layered with anti-vibration cork material (Figure 2.7).

Optitrack [383] was adopted as the Motion Capture since the equip-

ment was available in the laboratory. It is compatible with the swarm

management solution of Section 2.5.5. Optitrack uses a Point Cloud re-

construction engine [384]. That is, it triangulates two-dimensional points

from camera images into coordinates in a three-dimensional space. For

this purpose, four Flex 13 cameras are set up on the Flight Arena (as seen

in Figure 2.6).

The Flex 13 cameras [384] are infrared cameras, and so they must have

an unobstructed view of any tracked object.

The exact positions of the cameras give a certain coverage of the Flight

Arena. The next section determines how much of the Flight Arena is

localized by the cameras.
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(a) Camera Ray

(b) 4 camera rays

(c) Intersection Region

(d) Covered Volume

Figure 2.9: Modelling the Coverage Vol-

ume

2.4.3 Lightray Coverage Study
We investigate how much of the flight arena is localized by the motion

capture. The drones can only be flown in a space covered by the infrared

cameras, therefore we perform a design study to maximize this flight

space.

Lightray Simulation

A model is designed in Solidworks [385] to simulate the coverage of our

cameras. Figure 2.8 simulates the camera coverage on a table the size of

the Flight Arena. A key factor is the camera’s pitch angle down from the

horizontal. Figure 2.8 compares an orientation at 45° from the horizontal

to one at 30 degrees.

(a) Isometric view of 45deg rays (b) Isometric view of 30deg rays

Figure 2.8: Lightray simulation on the Table for 45° angle from the horizonta

The coverage percentage is determined as the volume of space localized

by the flight cameras over the total usable volume above the Flight Arena.

Figure 2.9 shows the modelling process of ray coverage volumes. The

design requirements are as follow:

▶ The cameras are placed above the table corners. within the net

region so as to have a clear view of the drones when the net is

lowered

▶ There are a total of 4 cameras available during motion capture

installation. The flight space measures 3×2×1.3 m.

▶ Flex 13 cameras have a 56° field of view, and this is replicated in

simulation (Figure 2.9).

▶ In order to triangulate a position, the motion capture requires a

minimum of 2 rays to intersect [384].

These volumes can then be determined in Solidworks using its Volumetric

Tool [386]. For a pitch angle of 30
𝑜
, The volumes of the flight space and

of the intersection area above, are respectively of 7.8 𝑚2
and 6.134 𝑚2

. As

a result, we determine that the usable region for flight is 78.64% of the

3×2×1.3 m flight space. This demonstrates that 20% of the flight space is

unusable. This is not surprising, considering that 4 cameras are directly

above the table and constrained by the netting.

Coverage Optimisation Study

The camera’s pitch angle is varied to determine the point of optimal cov-

erage. Figure 2.10 shows the volumes generated during the study.
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(a) With pitch of 20
𝑜

(b) With pitch of 25
𝑜

(c) With pitch of 30
𝑜

(d) With pitch of 35
𝑜

Figure 2.10: Lightray simulation for Intersection of any 2 lightrays.

Figure 2.11: Overview of the Crazyswarm

Control Loop, as per the Crazyswarm offi-

cial documentation (August 2021) [379]

The study has two parts. The first study varies by increments of 5
𝑜
,

in order to determine the range of volume maxima. The second study

finetunes by increments of 1
𝑜
, with the help of a Solidworks Design Study

[386]. This simulation tool is used to generate volumes automatically.

It has trouble generating volumes if the angle increments are too large,

therefore the first study is done manually.

Table 2.2: Results of Coverage Optimisation Study.

(a) Finding Local Maxima with Manual Study

Pitch Volume % Max

(deg) (𝑚𝑚3
) Covered Range

10 6 607 805 800.35 84.7154 ◦
15 6 970 142 481.03 89.3608 •
20 7 014 173 181.97 89.9253 •
25 6 804 720 310.30 87.2400 •
30 4 855 500 995.33 62.2500 ◦
35 5 006 693 602.87 64.1884 ◦
40 3 747 076 773.66 48.0394 ◦

(b) Finetuning with Automatic Design Study

Pitch Volume % Max

(deg) (𝑚𝑚3
) Covered Range

16 7007549683.27 89.8404 ◦
17 7034381844.70 90.1844 ◦
18 7050625519.44 90.3926 •
19 7056144612.83 90.4634 •
20 7014172714.71 89.9253 •
21 6999358686.15 89.7354 ◦
22 6972124192.42 89.3862 ◦

Through these studies, the coverage volume was increased from 78.64%

by 11.31% up to 89.95%, and by 0.51% to 90.46%. This demonstrates

that about 10% of the flight space is still out of reach. While the netting

constraint forces the cameras to have this inconvenience, the study could

be further optimised by varying the yaw angle of the cameras and moving

them away from the corners.

2.4.4 Flight Stability Tests
Tests of the stability of robotic systems are routinely performed to

measure their robustness to external forces. This is a key challenge in

drone development [382], where a drone maintains dynamic stability

by counterbalancing six directions of freedom, as opposed to two for

wheeled systems in static stability.
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Figure 2.12: View of the Flight Arena dur-

ing the 2 Drone Hover experiment.

The Crazyswarm ecosystem [382] makes use of a position and rate

controller for each drone in its swarm. This means that a setpoint is

sent to each drone separately, each correcting their current pose towards

the setpoint. The streaming setpoints are broadcasted from one or more

antennas. As the number of drones in the swarm increases, they receive

less frequent broadcasts from the antenna [380].

The purpose of this test is to determine the response of the drone’s position

and angle controllers to the natural disturbance during hovering. This

experiment investigates the effect of antenna distance and interference

on drone flight. With multiple drones to a single antenna, we evaluate if

the system demonstrates any performance limits.

Hypothesis

The hypothesis is as such: the error in drone pose will correlate with the

distance of the drones from the antenna.

Prediction

A hover stability test is a good measure of system performance since it

requires quick readjustments of the drone to counter natural disturbances

during hovering. In [360], Michał Waliszkiewicz et al. determine the

performance of their flight controller by comparing the attitude of the

drone in relation to the demanded null value of angular rotations. In

contrast, our input is a setpoint. The output is a set of translation and

rotational angles relative to a demanded null value for translation and

rotation. This output is graphed as a deviation over time. The shape of

the response charts are associated with flight stability over time.

Experiment Methodology

Hover stability is examined on the Flight Arena. The telemetry recording

and external video cameras are programmed to launch with the swarm

control interface. Three drones are hovered in the Flight Arena at an

altitude of around 1 m. It was possible to record a 20-s long autonomous

flight during which the flight controller attempted to stabilize the quad-

copter. During that time, the quadcopter remained within a radius of

two meters from its takeoff location.

Constraints: In preparation for the flight, each of the three drones are

inspected for minimal positional displacement of less than (1cm + 0.01 rad).

This ensures fully functional position controllers for the drones.

Results

The flightpaths of the three drones are plotted alongside . The topview

and the sideview are featured below.
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(a) X translations (b) Y translations

(c) Z translations (d) Roll, pitch and yaw rotations

Figure 2.13: Hover Experiment: Stability Tests on Flight Arena.

Figure 2.14: 3D Plot of 2 Drone Hover.

The flightpaths are smooth and generally show very minimal jerking.

There are very little discontinuities, attesting to a continuous localization

process.

Table 2.3: Stability Comparison of two Drones.

Criteria Drone 1 Drone 2
Min Max Range Min Max Range

X -0.84 -0.80 0.04 0.44 0.48 0.04

y -0.0272 -0.0228 0.0044 -0.0289 -0.0255 0.0034

Z 0.31 0.37 0.06 0.28 0.34 0.06

Roll -0.018 0.009 0.027 0.009 0.017 0.008

Pitch -0.020 0.036 0.056 -0.003 0.026 0.029

Yaw -0.034 0.039 0.073 -0.014 0.021 0.035

Selection ✗ ✓

Drone 2 has less variation in both translations and rotations than Drone

1. This is confirmed in Table 2.3. Drone 2 is more stable in this test than

Drone 1. The sample hover error is ±72.24 mm ±0.096 rad.

The discrepancy between the two drones could be attributed to a number

of factors. This work may be improved with a second test, where the

two drones’ positions are inversed. All in all, the flight is substantially

accurate, with a peak translation of 6cm.

Conclusion of Test

Drone 2 is further from the arena and exhibits more stability. The drone

that is furthest from the antenna does not have more pose error, and the

hypothesis is rejected.
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2.5 Software Environment

2.5.1 Modules involved in Software Environment
This section is a brief mention of all the platforms, systems, services, and

processes the software environment would depend on.

▶ Motive [383] processes OptiTrack camera data to deliver global 3D

positions, marker IDs and rotational data.

▶ Crazyswarm [380] is an swarm management layer that allows multi-

drone flight of Bitcraze Crazyflie drones in tight, synchronized

formations,

▶ ROS [387] is a set of software libraries and tools that assist in

building robot applications.

▶ SMACH [388] is a task-level architecture for rapidly creating com-

plex robot behavior and integrating ROS utilities,

▶ Unity [389] is a cross-platform game engine used in a range of

mixed reality research [390][376][391].

For the sake of replicability, the version of each module is documented

in the references.

2.5.2 Operating Systems
We adopt a distributed systems approach, whereas various components

are spread across multiple computers on a network. These devices

split up the work, coordinating their efforts to complete the job more

efficiently than if a single device had been responsible for the task. This

section is a brief description of relationships between the modules and

system features. Figure 2.15 encapsulates the software modules into their

respective operating systems, Ubuntu and Windows.

Figure 2.15: Network Interfaces Encapsulated in Operating Systems.

Each OS accommodates compatible software technologies used in this

architecture. Optitrack and Unity have been developed for Windows

systems. A Windows 10 OS is loaded on a standalone PC. On the other

hand, ROS have been developed for Ubuntu systems. An Ubuntu 18.04 OS

is loaded on a standalone PC. The interface between the two is managed

by the ROS middleware, which is expanded upon in Section 2.5.3.
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Figure 2.17: Swarm solution interactions

with System Architecture

2.5.3 Middleware Solution
In a middleware [392], modules do not need to be linked within a

single process, and this instead can be separated into the following

elements.

▶ Package management: drivers and other algorithms can be con-

tained in standalone executables,

▶ Hardware abstraction: in software, this refers to a sets of routines

that provide programs with access to hardware resources through

programming interfaces. This is explored in Section 2.6: Swarm

Programming Interface.

▶ Low-level device control: the ROS interface serves as a communi-

cation layer with onboard devices such as motors and the battery

sensor,

▶ Message exchange between processes: inter-process communi-

cations allows to pass data between modules, such as data from

drone poses shown in Figure 2.16.

▶ Managing robotics-related functionalities: handling the concur-

rent activity of multiple robots via a global parameter manager

and a global task manager.

The main objective for this system’s Middleware Solution is a more

flexible, more reconfigurable and generally modular layout. This proves

useful in a development and demonstration environment that requires

many critical moving parts. This system’s network interface is shown in

Figure 2.16.

Figure 2.16: Network interfaces with ROS.

ROS provides a central role of resource management, from managing

various interfaces in the system implementation to further hardware

abstractions.

2.5.4 Virtualisation of Physical Objects
Once localized by the motion capture setup, pose data is transferred to

the middleware layer. The pose data of physical objects, including the

drones, becomes available in real-time to a range of companion software,

via this ROS middleware layer.

2.5.5 Swarm Management Layer
The Crazyswarm framework [379] is adopted as an control layer for the

Crazyflie drone. The main advantages of the Crazyswarm over other

frameworks are:
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Figure 2.18: Simulation environment in-

teractions with System Architecture

Figure 2.19: Task Manager interactions

with System Architecture

▶ Motion capture integration. Crazyswarm contains drivers for the

Optitrack System. In contrast, the Crazyflie proprietary API can

send position measurements to the Crazyflie, but does not know

how to get position measurements from mocap hardware.

▶ Python firmware bindings. Crazyswarm’s simulator is built upon

automatically generated Python bindings for certain modules

in the Crazyflie firmware. The binding system can be helpful

when developing new firmware modules, especially when they are

mathematically complex and hard to debug.

▶ ROS foundation. The Crazyswarm server program is a ROS node.

The Python API Reference is a thin wrapper around the ROS

interface. The ROS interface is explored in this section.

2.5.6 Simulation Environment Layer
The first objective of the simulated environment is to serve as a graphical

interface in order to develop tasks otherwise too difficult to deploy. The

priority of the virtual reality is therefore set on rendering capabilities,

and the ability to obtain camera streams from this environment. The

robotics backend, described in the previous elements, can interact with

the Unity3D game engine.

As shown in Figure 2.18, ROS has a steady stream of poses from the

physical drones, allowing for virtual visualisation. Key events and data

can be exchanged between ROS and Unity3D. The way this is achieved is

examined in Section 3.4.

2.5.7 Task Management Layer
A Task Manager assists in the scheduling of flight tasks relative to

one another. The task manager has multiple responsibilities in this

framework.

▶ First, it loads the description of all tasks.

▶ It then provides a service to start or stop a given task,

▶ It keeps track of the status of all tasks currently running or recently

terminated.

▶ It is also responsible for instantiating the task scheduler that

manages the threads in which tasks actually run.

This manager is implemented with a Client-Server communication as

seen in Figure 2.20.

The Client directly tracks the state of each process in a larger decision

process. The Action Server interacts with automated functionality, and

the Flight Server interacts with the robot instruction stream. The building

blocks of this approach are:

1. A Client State Machine

2. Client-Server Messages

3. Server Handling of Actions

4. A Distributed Parameter Handler

5. Scaling to Multiple Drones
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Figure 2.20: The client-server interaction.

Figure 2.22: The client-server interaction.

1 | A Client State Machine

The client requires a decision-maker between each state and a set of pos-

sible future states. A state machine is chosen to coordinate the transition

between different usecases. For this, the SMACH library is used [388].

Task handling is implemented with several scheduling elements.

▶ Concurrency: the ability for a program to be decomposed into

parts that can run independently from each other. This means that

tasks can be executed out of order and the result would still be the

same as if they are executed in order.

▶ Preemption: the act of temporarily interrupting an executing task,

with the intention of resuming it at a later time. This interrupt is

done by an external scheduler with no assistance or cooperation

from the task.

▶ Interruption: a process tells the task manager to stop running the

current program so that a new one can be started.

2 | Client-Server Messages

A message transmits data values during client-server communication.

ROS uses a simplified messages description language [392] for describing

the data values (aka messages) that ROS nodes publish. This description

makes it easy for ROS tools to automatically generate source code for the

message type in several target languages.

Figure 2.21: Overview of the ROS Message structure.

In an Action Client-Server interaction, communication is ensured ROS

Messages with three distinct roles: the goal, the feedback and the result

[392]. An action is executed when the goal requests an action with

a set of parameters to the server. Feedback parameters can selected

for monitoring during the action’s execution. The result informs any

concurrent threads of the final state of the action.
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3 | Server Handling of Actions

The Action Server executes an action in the form of a callback functions.

A task completes when a particular condition is met. In order to manage

this, an action callback can incorporate a condition in its execution. The

next section examines this in more depth.

Each of these pre-loaded behaviours needs to be scheduled. For this, an

open-source Function Handler is used, referred to as the ROS Action

Server [392].As a result, each function for a specific task server will be

launched from a central launchfile:

1 <launch>

2 <group>

3 <remap from='_goTo' to='drone1_goTo'/>

4 <node name='drone1' pkg='crazyswarm' type='ros_action_server.py'>

5 </node>

6 </group>

7

8 <group>

9 <remap from='_goTo' to='drone2_goTo'/>

10 <node name='drone2' pkg='crazyswarm' type='ros_action_server.py'>

11 </node>

12 </group>

13 </launch>

14

15

Figure 2.23: Example of Server Launchfile with multiple concurrent uses of the same program.

This ROS launchfile loads the functions declared in the Action Server,

and remaps them to each drone in the choreography. This allocates a

thread under the form of a ROS node. These ROS nodes act as separate

Request/Response instances.

4 | ROS Parameter Handler

The ROS main thread includes a commonly-used component called the

Parameter Server, implemented in the form of XMLRPC, and which is, as

the name implies, a centralised database within which nodes can store

data and, in so doing, share system-wide parameters.

1 crazyflies:

2 - channel: 35

3 id: 1

4 initialPosition: [0.0, 0.0, 0.0]

5 type: default

6 - channel: 27

7 id: 2

8 initialPosition: [1.0, 0.0, 0.0]

9 type: default

10 - channel: 27

11 id: 5

12 initialPosition: [4.0, 0.0, 0.0]

13 type: default

Figure 2.24: Parameter File (.yaml)
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Figure 2.25: Task Manager interactions

with System Architecture

Multiple programs query this file upon initialization of the swarm

management layer. Each robot is distinguished by their channel, id and

initialPosition. This allows for identifying drone ids and other unique

information.

5 | Scaling to Multiple Drones

Similarly to Cedric Pradalier[393], a procedural task-based programming

approach is adopted. This can be likened to a centralized server that

services multiple drones. Figure 2.26 shows the full Task Management

Layer Architecture.

Figure 2.26: Task Management Layer Architecture.

This approach values granularity, being lightweight, and the ability to

share similar processes across multiple apps. As a result, it is therefore

highly reusable for new tasks.

2.6 High Level Interface
A high level interface is an abstraction layer for development activities.

In order to simplify task development, and align with the thesis goals,

we develop a framework for high level interaction between the operator

and the functionalities of the testbed.

2.6.1 Motivation
The Testbed, as described in Section. For such purposes, it is required to

test user code. Therefore an interface is a key element for the user. There

are several advantages to specialised tasks for the testbed.

▶ Handling sub-tasks to various levels of depth: microservices help

automate sub-tasks at a desired complexity. When encapsulated in

this way, are separate modules fit for demonstration, that can later

be optimised and refined during development.

▶ Monitoring the swarm: a central monitoring system can run in

parallel with the particular algorithms that are tested and validated.

For instance, a battery voltage threshold helps to monitor a correct

running of the hardware.This allows for preventive maintenance

during demonstrations but also during development.
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Figure 2.28: Example of a robot Instruc-

tion.

In summary, more ‘complex tasks’ will allow for the automation of

separate subtasks in a controlled manner.

2.6.2 Conceptual Overview
The high-level interface combines three major elements:

▶ the management of low-level devices upon each robot,

▶ communication with the swarm, and

▶ scheduling of instructions.

In order to achieve this, the intermediary structures for tasks are laid

out here. Figure 2.27 labels a hierarchy of tasks. The drone is instructed

to alternate between two waypoints until a software condition is trig-

gered.

Figure 2.27: Example state machine to implement individual tasks.

This example serves to illustrate the conceptualisation of a subtask and a

multi-step task. The concurrence of waypoints and the software trigger

is consider a sub task, and within a state machine, which is referred to as

a multi-step task. This framework offers a definition for complex tasks,

as tasks that coordinate the scheduling of instructions, with multi-robot

instructions.

2.6.3 Architectural Approach
To create these complex tasks, this high level interface has the following

architectural choices:

▶ Encapsulating robot instructions Robot commands are assimilated

into this programming interface as individual tasks.

▶ Encapsulating swarm instructions Robot instructions are included

in generic functions as swarm instructions.

▶ Encapsulating sub tasks Scheduling processes such as a concur-

rence runs in a function encapsulating it.

This architecture is written in Python, known for its ease of use and

flexibility. In this way, multi-step tasks manage the swarm stack, from

executing single-robot commands to ensuring the dynamic management

of swarms.

Robot instructions

The Crazyswarm API from Section 2.5.5 interfaces with low-level hard-

ware for landing, takeoff and further behaviours that can be coded

remotely. However, for the purpose of centralised task management,
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Figure 2.29: Example of a multi-robot in-

struction.

Figure 2.30: Example of a sub task, that

includes individual robot instructions, but

can also include multi-robot instructions.

Figure 2.31: Choreography Design: State

Machine

the execution of each instruction should be monitored accordingly. Thai

Phan, Wolfgang Honig, and Nora Ayanian [376] offer ROS telemetry

tools, such as battery monitoring and a reset utility. These can be used

as conditions in the execution process. Ultimately, an additional layer of

abstraction is required for multi-drone instructions.

Multi-robot instructions

This section outlines the functions developed for group behaviours:

concurrent takeoffs and landings, querying multiple drones for low

battery level, etc. Fly-Octogon and Land-all are examples of multi-robot

instructions.

This microservice model is a major component of optimizing swarm

programming towards the multipurpose task model outlined in the

objectives.

Sub task management

The objective for sub tasks is to assist in creating, and coordinating,

higher-level behaviours. An example of this is the concurrent_traj

module, whereas two drones are told to fly simultaneous trajectories.

This is of particular interest as two drones will take indeterminate
amounts of time to respond to commands. Concurrency — in the context

of programming — is the ability for a program to be decomposed into

parts that can run independently of each other.

Multi-step tasks

A decision process combines the various modules developed above into

a sequence of tasks. This is achieved with a Finite State Machine, which

is implemented programmatically with the SMACH python library [388].

A choreographic state machine is implemented in section 2.7.

2.7 Testbed Demonstration
A drone choreography is designed as a live demonstration of the Testbed’s

functionality. The experiment data is accessible publicly [361].

2.7.1 Choreography Design
The State Machine for the full choreography is available in Figure 2.31.

This demonstration includes:

▶ Takeoff and landing, separately and concurrently.

▶ A pre-loaded trajectory, from a Bezier curve: concurrently.

▶ A polygonial shape flown by two drones, demonstrating simulta-

neous movement through a set of waypoints.

▶ Autonomous state changes.

This state machine functions any number of drones: using the swarm

building blocks developed in Section 2.6, the dronesexecute trajectories

simultaneously; it then moves to certain waypoints indefinitely. In this
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Figure 2.32: Simultaneous pre-

programmed trajectories.

Figure 2.34: Multi-drone and multi-point

loop.

Figure 2.35: Sub task: monitoring an active

topic.

case a figure of 8 is executed on both drones followed by an octogon.

Finally, upon an operator signal, the drones land. The state machine is

such that the drones also land if one does not reach its corresponding

waypoint in time.

1 | Pre-loaded Trajectory

Two Figures of 8 are flown simultaneously. The figures of 8 are concurrent

Bezier shapes, pre-loaded onboard each drone’s trajectory follower [379].

This is coded using the high level interface as in Fig 2.33.

1 fig8_sm = concurrent_trajs(selected_drones = ids, traj_id = 8)

2 StateMachine.add('FIG8_EXECUTE', fig8_sm,

3 transitions={'succeeded' : 'NEXT_STATE',

4 'aborted' : 'land_all',

5 'preempted' : 'land_all'})

Figure 2.33: Integrating a pre-loaded trajectory in the State Machine

The Figure of 8 is assigned an id of 8. Other trajectories are assigned other

ids. The concurrent_trajs function is thus called upon with the required

drones and their required ids.

2 | Multi-point Trajectory.

This state loads a custom trajectory on the drone, which is executed,

before moving to an indefinite octogonal trajectory. The use of waypoint
following is an automation of the motion to specific points.

3 | Topic Monitor

The use of a Topic Monitor is useful to interface with active topics. For

instance, at any one moment that a drone gets too close to a particular

point, it initiates a landing. The intended behaviour is represented

visually alongside.

This is another such subtask that fulfils the initial goal: monitoring

the swarm with preventive measures during demonstration as well as

training phases. This is performed programmatically with a concurrence

between a drone and the /collision topic.

4 | Choreography State Machine

The previous sections are integrated into a State Machine. The configura-

tion of the state machine is displayed in Figure 2.36. Individual tasks are

coloured in green and swarm tasks in orange.

Three drones are positioned about the Flight Arena as in Figure 2.37.

5 | Choreography Execution
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Figure 2.36: State Machine Visualisation

Figure 2.37: View of the Flight Arena dur-

ing Experiment.

The state machine is run on a separate thread as in Figure 2.38.

1 myswarm = swarmInterface(all_ids = [1,3,5])

2 sm0 = myswarm.execTrajandOctogon (ids = [1,3], traj_shape = 8)

3 myswarm.start_sm_on_thread(sm0)

Figure 2.38: Execution of Multi-step tasks

This invocation of the state machine clearly shows drone ids [1,3,5] as

extracted from the Parameter Server, in order to act as the drones 1,2,3.

The trajectory shape 8 refers to the Figure of 8.

2.7.2 Results
We proceed with an inspection of the demonstration. The flightpaths of

all three drones are plotted together.
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Figure 2.39: Full Flightpath of all three drones during the Choreography.

Figure 2.40: 3D Plot of Octogon Figure.

Overall, the flightpaths are smooth. The Figures of 8 are traced distinctly,

as well as the two octogons. The figure of 8 of drone 3 is discontinuous,

and yet there is no apparent effect on the shape. This suggests that

the drone moved beyond the area localized by motion capture. When

examining the octogons, the top view shows a near perfect superposition:

showing small differences in position of less than 2cm. Finally, a line

connects the two shapes. This shows that these figures did actually occur

in sequence.

Figure 2.41: Hover Experiment: Stability Tests on Flight Arena.

Further inspection of the octogons requires a topview and a sideview.

The Octogon is traced very clearly. Near the end of the experiment, there

is a noticeable wobble in the blue line. This behaviour is due to a low

battery level. A notable difference is the wobble in the xz plane, which

demonstrates a loss of precision as the drones get closer to the ground.

There is a symmetrical behaviour. Further tests can determine what this

is attributed to.

Table 2.4: Key findings in Chapter 2.

Test Description Value

Volume of Flight Arena Localized by Motion Capture 90.46%

Maximum Flight Error Recorded in Hover Test ±72.24 mm ±0.096 rad
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Figure 2.42: Swarm stack in the Rosbuzz

system [373]

Figure 2.43: Copilot on the Flying Machine

Arena [375]

2.7.3 Discussion
In this chapter, a swarm programming approach is developed along

similar lines to [378], the swarm API that was developed for swarms of

nanodrones. Both frameworks load a set of functions, they allow the user

to select which drones perform a certain task, and group drones according

to the task at hand. While Buzz manages membership with a dedicated

hash table, our interface makes use of a global parameter handler [373].

Both architecture allows for the development different modules can be

developed independently and related dynamically.

With a high-level interface, this work concerns itself with a swarm-specific

language that is not "too top-down" or "too bottom-up". This distinction

is seen with increasing swarm sizes, and for creating user tasks more

focused on development, or on improving safety and phone interference

for demonstrations.

Figure 2.42 demonstrates that Buzz uses comparable structures for swarm

engineering.). ROS communicates with device hardware via MAVROS, a

ROS library for compatible Micro Aerial Vehicules. It then has a control

distribution layer that is comparable to our Task Manager, a swarm

communication layer like Crazyswarm and a swarm control layer like our

high level interface. The swarm stack in other research may be composed

of other technologies, but retains this structure.

The Flying Machine Arena [375] is an active area of research for drone

development and demonstration, and their ’Copilot’ is described as

a flight monitoring solution. Figure 2.43 demonstrates the types of

activities achieved via the copilot: updating drone poses during code

execution (a), executing playback on recorded poses (b), and executing

procedures in simulation (c). These elements are handled by the Task

Manager described in this chapter, demonstrating the pertinence of a

flight management solution.

The procedural task-based approach of this chapter is not unique: it

figures in [393] who develops a generic pythonic form that need not

depend on middleware for task management. All in all, this approach

can aid in development, in ways that can be outlined here.

▶ preventing mechanical failure upon software failure.

▶ assist in creating, and coordinating, higher-level behaviours.

▶ monitor the state of every UAV asynchronously.

▶ Assist in troubleshooting with a modular layout.

2.7.4 Summary
This flight has demonstrated multiple working functionalities. The first

is the use of the Swarm Programming Interface. Using the building

blocks developed in this chapter, it is possible to develop a multi-stage

process, one that includes preloaded trajectories as well as waypoint

trajectories, choreographic positioning, and escape cases upon a system

abort. With such tools for assistance during development, this set of

functionalities pushes beyond previous work, as it offers a layer beyond

the crazyswarm’s robot instruction set.
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2.8 Chapter Summary
The proposed state-based architecture is a first step towards creating

UAV operations to perform complex tasks, collaboratively or otherwise.

After all, this framework has put in place the monitoring tools and the

task-based framework to execute complex behaviours; and beyond that,

putting in place a Flight Arena has already helped to validated these

tools. Such services can easily be tested and deployed from a framework

like this one.

Certain elements in this framework are taken a step further in Chapter 3:

the ability to send streaming setpoints to a drone opens the possibility of

flight piloting through other means. This would not be possible without

the foundation established in this chapter: the drone architecture, the

motion capture setup and the swarm framework.

The tools that were established here may need to be challenged by further

research. One direction is the decentralisation of agents with respect

to the platform: where this framework has a central role in allocating

behaviours, one would opt for a framework that gives each agent the

ability to act independently. However, the central monitoring can remain

a major asset when developing such a swarm, as it serves as a safety

recourse to prevent any hardware damage.

The testbed makes great use of distributed networking, and it aligns

with the first approach of the thesis for task creation. From handling

specific parameters, to managing the task execution and scheduling in

a centralised manner, the middleware monitors the different agents in

an asynchronous manner. As opposed to non-distributed systems, such

as direct one-to-one links to onboard devices, it allows the developer to

divert their focus from system communication to performance-critical

applications.



Figure 3.1: Major fields that constitute HDI

[357].

Number Name Gesture

1 Help

2 Ok

3 Nothing

4 Peace

5 Punch

Table 3.1: UAV rescue hand gesture

dataset, from [363]

Figure 3.2: Usecase of HDI that have been

incorporated in commercial drones [394]

Experimentations for
Human-Drone Interfaces 3

3.1 Introduction
In The state-of-the-art of Human–drone interaction: A survey (2019), Dante

Tezza and Marvin Andujar define Human-Drone Interaction (HDI) as a

field of research that consists of understanding, designing and evaluating

drone systems for use by humans, and in contact with humans. This field

is similar to human-robot interaction (HRI), however, a drone’s unique

characteristic to freely fly in a 3D space, and unprecedented shape makes

human-drone interaction a research topic of its own. Researchers develop

control modalities and better understand means of communicating with

a drone.

Human-drone interaction is a broad research field, for instance, a re-

searcher can design new drones’ shapes with friendly-like appearance,

while another researcher can focus on designing new user interfaces that

allow non-skilled pilots to accurately operate drones without extensive

training.

In line with the thesis goal, we look at two types of smart systems that

enhance the interactions between humans and drones. The first allows the

human to pilot a drone through a gesture interface. The second looks to

a virtual interface as a training ground for a real drone to avoid a virtual

object. A distributed system is used to to communicate and coordinate

these pipelines by passing messages to one another from any system. To

better understand their tradeoffs, the distributed systems are explored

and evaluated in this chapter.

3.2 Related Work

3.2.1 Exploring more Intuitive Gesture Control
[394] Jessica R. Cauchard et al. focalise on innovative methods to

interact with drones, including gesture, speech, brain-computer interfaces,

and others (Figure 3.1). As drones have different characteristics than

ground robots, such as not allowing touch interaction, it is unclear

whether existing techniques can be adapted to flying robots. Their user-

centric design strategy seeks to understand how users naturally interact

with drones.

3.2.2 Computer Vision for UAV Research
With state-of-art computer vision technology, gesture-based interaction

is growing and several publications are identified.

[363] Chang Liu and Tamas Sziranyi contribute to an opensource

database of body gestures which they test in practice with a drone (Figure

3.1). This paper contributes with an outdoor recorded drone video dataset

for action recognition, an outdoor dataset for UAV control and gesture
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Figure 3.3: OpenPose joint data and skele-

ton information

recognition, and a dataset for object detection and tracking. These datasets

are developed for emergency rescue services, which reveals how critical

these applications can be.

[364] Valiallah Mani Monajjemi et al. explores real-time vision-based

Human Drone Interaction with multi-robot systems. To create a team

the user focuses attention on an individual robot by simply looking at

it, then adds or removes it from the current team with a motion-based

hand gesture. Another gesture commands the entire team to begin task

execution.

Compared to wearable sensor-based approaches, automated methods

for video analysis based on computer vision technology are almost

non-invasive. This is beneficial, and even critical, for applications in

emergency rescue services.

3.2.3 Pose Recognition Algorithms
As a result, performance becomes application-critical for automated

methods for video analysis. This, however, remains a technical challenge.

According to [395], “Robust real-time hand perception is a decidedly

challenging computer vision task, as body parts often occlude themselves

or each other (e.g. finger/palm occlusions and handshakes) and lack high

contrast patterns (e.g. between fingers).” To respond to this challenge, the

Mediapipe framework [395] bases itself on a Machine Learning model,

and on techniques for efficient resource management for low latency

performance on CPU and GPU.

In contrast, OpenPose [363] employs a convolutional neural network

to produce two heap-maps, one for predicting joint positions, and the

other for partnering the joints into human skeletons. In brief, the input

to OpenPose is an image and the output is the skeletons of all the people

this algorithm detects. Each skeleton has 18 joints, counting head, neck,

arms, and legs. Each joint position is spoken to within the image arranged

with coordinate values of x and y, so there’s an add up to 36 values of

each skeleton.

3.2.4 Mixed Reality for UAV Research
Simulation systems have long been an integral part of the development

of robotic vehicles. They allow engineers to identify errors early on in the

development process, and allow researchers to rapidly prototype and

demonstrate their idea.

One of the first simulators that could recreate complex worlds in 3D is

Gazebo, circa 2004 [396]. The difference between Gazebo and different

3D simulation software of that time is that Gazebo was one of the first

to focus on resembling the world as realistic as possible for the robot

instead of for the human. Immersive robotic simulations can be used

to judge the performance of the robot and/or its concept [359]. In this

way, simulators can increase the efficiency and decrease the costs of the

development [396].

The first published definition of Mixed Reality (MR) was given by Milgram

and Kishino [397] as the merging of physical and virtual worlds. In their
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Figure 3.4: Flightmare Simulator [374]:

photorealistic views (top) and spectral

views (middle), followed by physics en-

gine.

definition, Augmented Reality (AR) and Augmented Virtuality (AV) are

seen as special instances of MR. In Augmented Reality, virtual objects are

projected onto the physical environment, while in Augmented Virtuality,

physical objects are incorporated into a virtual environment.

In ‘Mixed reality for robotics’ [390], the definition of Mixed Reality is

expanded to robotics by accommodating seamless interaction between

physical and virtual objects in any number of physical or virtual envi-

ronments. It is further demonstrated in [376] that Mixed Reality can

reduce the gap between simulation and implementation by enabling

the prototyping of algorithms on a combination of physical and virtual

objects within a single virtual environment.

In drone research, immersive simulators have various applications [396],

of which two are explored here:

▶ Generating exteroceptive sensor data: capturing sensor feeds of

the environment for one or more drones simultaneously.

▶ Testing navigation behaviour: Testing flight patterns subject to

simulated environment stimuli, prior to real-world deployment.

3.2.5 Generating exteroceptive sensor data
Simulation can be a huge advantage when real robot prototypes or

products are not available or cannot be used due to other circumstances.

During the development, simulation can be used to assess the basic

hardware functionality.

For instance, FlightGoggles is capable of high-fidelity simulation of

various types of exteroceptive sensors, such as RGB-D cameras, time-of-

flight distance sensors, and infrared radiation (IR) beacon sensors. This

example can be extended to multiple sensors simultaneously, leading the

way to richer distributed swarm systems.

However, older simulators don’t provide an efficient API to access 3D

information of the environment [374]. To foster research in this direction,

Flightmare provides an interface to export the 3D information of the

full environment (or a region of it) as point cloud with any desired

resolution.

3.2.6 Testing navigation behaviour
Controllers evolved in simulation can be found to be inefficient once

transferred onto the physical robot, remains a critical issue in robotics,

referred to as the reality gap. the most efficient solutions in simulation

often exploit badly modeled phenomena to achieve high fitness values

with unrealistic behaviors. This gap highlights a conflict between the

efficiency of the solutions in simulation and their transferability from

simulation to reality. When deploying to real-life scenarios, there are

several challenges [398]:

▶ Optimising the flight control of a UAV. This is relevant with chang-

ing payloads, unexpected weather conditions (dust, rain, changing

wind), as well as preventive maintenance (motor degradation,

battery damage).
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Figure 3.5: A dedicated test-and-

demonstrate environment.

▶ Optimising the flight path of a UAV. Several sensor inputs can

inform the drone’s flight path and flight speed. This gives several

ways to optimise the data acquisition process, from more complex

data intakes and various activation/triggering optimisations.

Prior to real-world deployments, different functional elements on a robot

can be tested in parallel and reduce development time. For instance, the

algorithms for localization, motion planning or control can be tested,

improved, and integrated continuously. There are various artificial intel-

ligence algorithms concerned with the thematic of guidance, navigation

and control (GNC). A subset of these algorithms is explored in, pertaining

to Deep Reinforcement Learning (DRL). These techniques can improve

the drone operation as shown in Table 3.2.

Table 3.2: Instances of RL tasks taken from [398]

Task Input Observations Output Actions

1. Quadrotor control [𝑝, 𝜃, 𝑣], d=10 [𝑐, 𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧 ]], d=4

2. Control (motor failure) [𝑝, 𝜃, 𝑣, 𝜔], d=12 [ 𝑓1 , 𝑓2 , 𝑓3], d=3

3. Flying (in gate) [𝑝, 𝜃, 𝑣, 𝜔, 𝑝𝑔𝑎𝑡𝑒 , 𝜃𝑔𝑎𝑡𝑒 ], d=18 [ 𝑓1 , 𝑓2 , 𝑓3 , 𝑓4], d=4

Current research of drone quadrotor control employs newly architected

neural networks and learning time-optimal controllers for drone racing

[398]. This element is largely figured in Flightmare’s [374] simulation

usecases, and echoes the state of the art research in Reinforcement

Learning for UAVs [398], suggesting that new RL implementations can

optimising the flight stability of a UAV as well as new perception pipelines

for the navigation of a UAV. Flightmare offers convenient wrappers for

reinforcement learning. Those gym wrappers give researchers a user-

friendly interface for the interaction between Flightmare and existing RL

baselines designed around the gym interface.

3.3 Drone Piloting With Gesture
Gestures are the most natural way for people to express information in

a non-verbal way. Users can simply control devices or interact without

physically touching them. Nowadays, such types of control can be found

from smart TV to surgery robots, and UAVs are not the exception.

Drone piloting and other control modalities [357] make use of various

inputs to assist in flight. Perception modules for drone flight usually

consist of data-driven models based on multiple sensor modalities.

These inputs can be sensor modalities, such as camera, lidar, and radar,

published in autonomous-driving related datasets, but also human

commands, in the case on drone piloting. In this way, perception pipelines

are routinely developed as a realtime interface for sensor data from

multiple perception configurations.

As of Nov. 2019, multiple gesture interfaces have been developed for

UAVs [363] [364], but are lacking in drone piloting. Realtime interfaces

for drone piloting are discouraged [357] due to high latency and low

control precision compared to other drone control modalities. As of Sept.

2021, the literature utilizing the Crazyflie nanodrone does not include

realtime streaming commands [365].
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Figure 3.8: Pose detection in gesture recog-

nition workflow

3.3.1 Overview of Pipeline
A pipeline is implemented to ensure that the right gesture is associated

to the right drone command, in real-time and continuously. This pipeline

is conceptualised as in Figure 3.12.

Figure 3.6: Gesture recognition workflow

The Testbed of Chapter 2 offers a working environment, as well as

a command streaming interface between a drone and a companion

computer. The focus is therefore on the two first elements: a gesture

recognition workflow, followed by a drone control workflow.

3.3.2 Gesture Recognition Layer
In this project, we employ a 3D Pose Estimator, described in the following

section, followed by a Gesture Classification Script.

Figure 3.7: Mediapipe algorithm in gesture recognition workflow

Machine Learning 3D Pose Estimation

MediaPipe Hands [395] is a high-fidelity hand and finger tracking

solution. It employs machine learning (ML) to infer 21 landmarks of a

hand from just a single video frame.

Figure 3.9: MediaPipe Hands data and joints information.

Precise key-point localization of 21 3D hand-knuckle coordinates remain

inside the detected hand regions. This allows us to have the spatial

position of each of the joints of a hand using only a normal camera.

Whereas current state-of-the-art approaches rely primarily on powerful

desktop environments for inference [363], MediaPipe Hands achieves
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Figure 3.10: Classification Script in gesture

recognition workflow

real-time performance on a mobile phone, and even scales to multiple

hands, making it an ideal solution for real-time pose tracking.

The desired gesture is hardcoded by its absolute position. For example, if

Figure 1’s landmark 8 is below the landmark 5, it can be interpreted as

closing your index.

Gesture Classification Script

Figure 3.11: Static Hand Signals: Right, Left, Up and Down

While the model is precise in landmark detection, there are false detections

of gestures due to marginal cases. A special buffer is used to filter the

most frequent gesture on a sliding window (for every 10 detections). This

helps to remove glitches or inconsistent recognition.

3.3.3 Drone Control Layer
Using a live gesture recognition module, a system is designed for stream-

ing commands to be sent to the drone.

Figure 3.12: Gesture recognition workflow

Note that the critical information flow between the components of the

system is unidirectional. Bidirectional communication, e.g. telemetry

from the vehicles, is supported, but is not required for controlled opera-

tion. All communication is done in a distributed, one-way manner, such

that the gesture recognition workflow is not affected by the drone listener

and there is no reliance on high-level code to keep track of the various

components, preventing unnecessary interdependence. The Gesture-to-

Command script decrypts the messages encoded into a custom ROS

message. This workflow serves as a fallback during experiments and

demonstrations.

Message passing between applications

The following message is passed via a ROS topic (TCP/IP message). It is

then depacketized upon arrival.
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Figure 3.13: Message structure adopted for command streaming

Figure 3.15: Velocity Filter in Pipeline.

Figure 3.16: Velocity Filter in Pipeline.

Figure 3.17: Initial volume 𝐴1 based on

Equation 3.1

Mode Selection

The following element in the drone control layer is the selection of an

adequate mode.

▶ Flight Mode 1: Position Update Mode. This mode moves the drone

translationally in three axes based on an absolute position.

▶ Flight Mode 2: Velocity Update Mode. This mode moves the drone

according to inputted velocities.

In each mode, the drone can move up, down, left or right. The following

hand gestures are associated with these directions.

Figure 3.14: Associating Gestures to Commands for the Gesture Piloting Pipeline

Velocity Filter

The velocity filter serves as a safety measure during development and

demonstrations. Given a drone’s position in the Flight Arena, it attributes

a particular value between 0 and 1. This value is then multiplied to the

velocity value determined from the gesture movement.

The shape of this Velocity Filter was defined using an ellipsoid, with a near

constant velocity within the ellipsoid and a sigmoid on the boundaries

of this shape. An initial volume is designed on 3.1.

𝐴1 =
𝑥2

𝑎2

+
𝑦2

𝑏2

+ 𝑧
2

𝑐2

with (𝑎, 𝑏, 𝑐) = (1.35, 0.85, 1.1) (3.1)
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Figure 3.18: Volume 𝐴2 after rescaling

with Equation 3.2

Figure 3.19: Volume 𝐴3 after integrating

the logistic regression of Equation 3.3.

Figure 3.20: Gesture Speed in Message

Streaming Workflow

Figure 3.22: Components involved in ex-

perimentation.

This figure is scaled according to constants (a, b, c). They are determined

empirically by measuring the furthest distance measured by the motion

capture. This ellipsoid is then transformed to better approximate the

required filter.

𝐴2 = 𝛼 ∗ ((1 − 𝐴1) − 𝛽)with (𝛼, 𝛽) = (18, 0.3) (3.2)

The volume is scaled up by 𝛼 and shifted down by 𝛽. Determining the 𝛼
and 𝛽 scaling parameters, leading to the shape in Figure 3.18.

𝐴3 =
1

1 + 𝑒−𝐴2

(3.3)

A logistic regression allows for a smooth speed transition at the limits of

this volume.

Gesture Speed and Angle

Hand movement is separated into angle and speed. As the hand moves

in a specific direction on the screen, the components of that vector can

be used to calculated the speed and angle of the drone’s movement. To

help smoothen the output velocity, the mean pixel distance is taken over

a rolling window.

Figure 3.21: Dynamic Hand Signals: Right, Left, Up and Down

Using these key landmarks, it is possible to discern hand poses and

develop a library of drone-piloting hand signals. These are programmed

accordingly in the Experimentation Section.

3.3.4 Performance Analysis
Aim

We put in place a demonstration for flight piloting in real-time using

the developed gesture interface. We present the workflow of real-time

gesture piloting pipeline and we evaluate it in terms of:

▶ System response time

▶ Accuracy of gesture recognition

Evaluation Techniques

System Response Time
The system response time is verified by applying a series of rapid ma-

neuvers to register any significant delays between the pilot’s commands
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Figure 3.23: Camera recording setup and

demonstration of a “DOWN” command

Figure 3.24: The frontview, sideview and

topview are taken with respect to this

frame of reference.

and their execution by the flight control system. Similarly, Michał Wal-

iszkiewicz et al. [360] choose to modify the drone’s angle in a specified

direction. This choice is arbitrary and the changes in velocity are used

in this case.The input was a demanded velocity in a specified direction.

The input was changed randomly by the operator with hand movements,

using the workflow described in this chapter. The output was a delay

of the velocity change in the drone. Finally, a system response time is

determined by averaging the response delays over the experiment.

Gesture Recognition Effectiveness
In order to evaluate gesture recognition performance, we identify the

false positive and negative rates of the pose detection, to compare with

existing research in real-time gesture detection. In comparison, Jonathon

Bolin et al. [366] evaluates the false positive and negative rates of the

pose detection by manually identifying both the incorrectly recognised

gestures, and the unrecognised gestures. Similarly, we identify the false

positive and negative rates of the pose detection, but instead of doing it

manually, we examine any discrepancies in the UAV’s trajectory flight.

Any inconsistencies in recognition are considered false positives.

Methodology for Piloting Operation

We design our experiments for an operator to guide the drone in an

intuitive way through hand commands.

Dataset The experiment was filmed from three angles, and a presen-

tation video is uploaded on Youtube [362]. The results were saved in a

rosbag format on Google Drive [399]. The data that is examined extends

from 11:19:20 to 11:20:30 on July 29, 2021.

Throughout this procedure, data is collected as a rosbag, a self-contained

file for recording ROS nodes and topics. In post-processing, we timestamp

the hand signal stream. This file is available at [399] and contains:

▶ The poses of the drone, ordered by timestamp: /tf topic.

▶ The hand gesture message contents: /hand_signal topic.

Results

Overview of Results The two flight regions were plotted separately.

The trajectory is plotted on 3 planes. The drone’s trajectory is first plotted

on the X-Z plane (as per Figure 3.24). The two flight regions are separated

by locating the transition gesture’s timestamp.

Gesture Recognition Effectiveness In preparation for this evaluation,

we label the drone positions where each hand signal is detected. Figure

3.27 superposes the drone’s trajectory and the hand gestures identified

at that particular point on the drone’s path.

The detection of hand gestures is found to be mostly continuous. Using

the methodology outlined earlier, the false positive and false negative

rates can be determined.

Looking at the graphs, it seems that left and down gestures are quite

regularly mistaken for one another. In contrast, gestures are different

enough (such as right and index) are recognised at 90%.This demonstrates
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Figure 3.25: Frontview Trajectory Graph with Gesture Piloting.

(a) Topview (b) 3d View

(c) Frontview (d) Sideview

Figure 3.26: Flight Trajectory Graphs with Gesture Piloting.

Table 3.3: Gesture Recognition Effectiveness.

Criteria RIGHT LEFT UP DOWN THUMBUP

len 342 280 150 87 201

False Positives 5 33 3 6 201

False Negatives 30 175 10 5 0

Accuracy (% correct) 89.7 25.7 93.33 87.35 0

Criteria INDEX PEACE THUMBDOWN TOTAL

len 192 131 100 1483

False Positives 15 6 100 369

False Negatives 23 36 0 299

Accuracy (% correct) 80.2 67.94 0 56.3

an interesting limitation in the pipeline’s design: the recognition seems

stumble between two similar gestures.

The effectiveness is averaged as the total percentage of correct gestures
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(a) Position Update Mode: Up (red), down (yellow), right (green) and left

(blue)

(b) Velocity Mode: Rightslides (red), leftslides(green), upslides (yellow),

downslides (blue)

Figure 3.27: Flight Timeline with Annotated Hand Signs.

over the full dataset. The accuracy is determined as 56.3% of the full

gesture dataset.

System Response Time In preparation for this evaluation, we to plot

the speeds at which the poses are streamed, as well as the desired speed

transmitted from the gesture script. The velocities of the actual drone are

calculated as per Equation 3.5 from successive pose data points over the

period of interest.

Δ𝑥 = 𝑥 𝑓 − 𝑥𝑖 and similarly for Δ𝑦 , Δ𝑧 (3.4)

𝑣∗ =
𝛿𝑢
𝛿𝑡

=

√
Δ2

𝑥 + Δ2

𝑦 + Δ2

𝑧

𝑡 𝑓 − 𝑡𝑖
(3.5)

This calculation is a simplification given the pose data has a stable

120 ± 0.4 Hz transmission frequency, which is ascertained during the

experiment (Figure 3.28).

Figure 3.29 plots the drone’s position and its associated velocity in Position

Update Mode (blue) followed by Velocity Update Mode (red).

The red graph is significantly more jaggered. This is expected since the

velocity updates depend on fast moving hand movements. In Figure 3.30,

we take a closer look at the interactions between a drone’s trajectory and

the signs identified at that particular instance. The velocity commands

(in green) are plotted alongside the drone responses (red).

The system response time is determined from Figure 3.30 by locating

specific spikes of velocity change, in the velocity command stream,

and locating spikes of velocity change in the drone flight stream. Their
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Figure 3.28: Transmission Frequencies throughout Response Time Experiment.

Figure 3.29: Flight Timeline with Gesture Piloting.

Figure 3.30: Flight Timeline with Velocity Updates.

timestamps are recorded in Table 3.4.

Table 3.4: Latency Calculation from Velocity Stream.

Points 1 2 3 4 5

Velocity Command 19.49.636 19.50.2053 50.4723 51.3419 52.2437

Velocity Response 19.9789 19.568 50.728 51.6482 52.5579

Duration of Latency 342.9 362.7 255.7 306.3 314.2

The average latency is found to be 271.0 ms from the average latency

of 10 points. This latency remains rather consistently between 200 and
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Points 6 7 8 9 10

Velocity Command 53.753 54.7583 55.3996 56.4005 57.6692

Velocity Response 53.9478 54.898 55.6579 56.6375 57.9679

Duration of Latency 194.8 139.7 258.3 237.0 298.7

Figure 3.32: Crazyflie in the Flight Arena.

Model Pixel 3 Samsung S20 iPhone11

Light 6.6 5.6 1.1

Full 16.1 11.1 5.3

Heavy 36.9 25.8 7.5

Table 3.5: On-device inference speeds

(in ms) for MediaPipe’s hand landmark

model, adapted from [395]

300 ms, which demonstrates stability over time. We can perform a cross-

validation this result with a visual check: we superpose the graphs by

eye to determine an approximate value (Figure 3.31).

Figure 3.31: Cross-verification by fitting the commanded velocities to the actual velocities.

To create this superposition, we shift the second graph by a difference of

250ms. This agrees with the experimental latency of 200-300ms.

3.3.5 Discussion
While Chang Liu et al. focus on outdoor datasets for single large drones,

this work looks towards interacting specifically on the drone’s position.

Such a specific usecase of hand-following seems to be relatively rare

in the literature. In fact, Tezza et al. [357], despite their survey of the

research field, remain sceptical as to whether this method might be the

best approach to applications that require fine and precise control, as

they pose the problems of higher latency and lower accuracy than other

methods such as a remote controller. This vision is coerced with other

members of the HDI community, and most datasets focus rather on

signaling events to the drone, instead of direct piloting (Figure 3.1 from

[363]). .

This performance analysis has measured the pipeline latency is evaluated

at 270ms. This is in large part thanks to MediaPipe Hands algorithm [395].

This algorithm is relatively new, and demonstrates real-time inference

capabilities, with a maximum inference of 36ms for hand landmarks (as

shown in Figure 3.5). This performance is evidently far different from

that of the perception pipeline developed here around the Mediapipe

framework, with different equipment.

This experiment has offered a way to approach hand-drone interaction.

Other approaches can offer a fuller exploration of the operator’s ease

in controlling the drone, by examining the frequency at which different

hand signals are used. As the operator controls the drone by sight, it

is possible for them to make minute readjustments. As a result, further

research could examine the role of intuition within this gesture loop. It
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Figure 3.33: Usecase of HDI that have been

incorporated in commercial drones [394]

Figure 3.34: Virtual and real environments

linked by this interface.

might also be possible to explore instances where the operator does not

look at the drone. Without visual feedback, this could give better hints as

to the controller’s effectiveness subject to clear hand commands.

Regarding the Thesis

In creating better service drones, one might wonder if a piloting system

is an effective means to research and development. It could easily help

manage swarms of drones, but is drone development the type of research

that requires the operator to make split-second decisions? After all, certain

tasks require split-second reactions: drones doing free-fall recovery for

instance. Perhaps it could be the beginning of an era of drone real-time

learning, where drones can develop functionalities more rapidly than

before, through kinetic means. Figure 3.33 is taken from the DJI website,

and shows a gesture instruction for a drone to take a picture. Perhaps

functionalities like this can become more natural, more closely coupled

with human behaviour.

3.3.6 Summary
The gesture interface used to pilot the drones is given 56% accuracy.

While the pipeline is based on MediaPipe Hands, the pose classification

was hardcoded, and the software can then be improved with a neural

classifier or an ML pipeline. In practice, the errors were filtered out by

the drone control pipeline.

3.4 Mixed Reality Interface
Drone piloting and other control modalities [357] make use of various

inputs to assist in flight. Perception modules for drone flight usually

consist of data-driven models based on multiple sensor modalities.

These inputs can be sensor modalities, such as camera, lidar, and radar,

published in autonomous-driving related datasets, but also human

commands, in the case on drone piloting. In this way, perception pipelines

are routinely developed as a realtime interface for sensor data from

multiple perception configurations.

A mixed reality interface serves to enable data transmission between a

physical drone and its virtual equivalent. This section documents the

design of a mixed reality environment (Figure 3.34). The first objective of

the simulated environment is to serve as a graphical interface in order to

develop tasks otherwise too difficult to deploy. The priority of the virtual

reality is therefore set on rendering capabilities, and the ability to obtain

camera streams from this environment.

3.4.1 Selected modules and technologies
This section is a brief mention of all the platforms, systems, services, and

processes this interface depends on.

▶ Unity3D [389] is a popular game engine which offers a simulated

environment. It is set up as the virtual companion to the Flight
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Figure 3.36: Video feeds of the test envi-

ronment

Arena. Unity is well suited since it enables high-fidelity graphi-

cal rendering, including realistic pre-baked or real-time lighting,

flexible combinations of different meshes, materials, shaders, and

textures for 3D objects, skyboxes for generating realistic ambient

lighting in the scene, and camera post-processing [374].

▶ ROS Sharp [391] is a set of open source software libraries and tools

in C# for communicating with ROS from .NET applications, in

particular Unity.

▶ ROS [387] is a set of software libraries and tools that assist in

building robot applications.

For the sake of replicability, the version of each module is documented

in the references.

3.4.2 Conceptual Overview
The link between the real and the mixed reality is designed with the

following core capabilities:

▶ Transmitting the pose of a real drone into a virtual environment.

▶ Transmitting an event between the physical and the virtual envi-

ronment.

For instance, a drone collision with a virtual object would have the

following workflow (Figure 3.35).

Figure 3.35: Proposed Workflow for Mixed Reality Collisions

The process of transmitting the pose of the drone to the simulator is

referred to as pose injection. This is done via the Network interface, from

ROS to the simulator. The process of collision occurs in the simulator,

between the injected pose, and a virtual body. This is done via a collision

interface within Unity.

These two elements can be readapted to a variety of event-driven scenarios.

For this reason, a mixed reality setup offers inexhaustive resources to

drone development.

3.4.3 Overview of System Network Interfaces
In order to establish a two-way mixed reality interface, the simulator and

the robotics backend are configured to communicate to each other.

To return to the System Network Layout (Chapter 2, Figure 3.37), the

Mixed Reality Interface involves Unity3D as well as the Task Man-

ager.
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Figure 3.37: Network Interfaces involved in MR flight.

Figure 3.38: Design of the network inter-

face.

Figure 3.39: Design of the event interface.

3.4.4 Event Sharing Workflow
A Network Interface for Mixed Reality Event Sharing

A Network Interface is used for the two objectives: injecting pose messages

into the game engine and retrieving event data to be sent to the ROS Task

Manager.

Collision Detection in the Virtual Environment

The virtual environment is a Virtual Arena. A particularity of this arena

is that it is 3 times larger than the actual flight arena. In other words, the

drone’s recorded position differs from the real arena by a factor of 3, and

the drone’s velocity also differs by 3. The two agents are also embodied

by virtual characters, annotated as 1 and 2 in the visual below. Video

feeds (Figure 3.36) show the perspectives of both agents, and these are

recorded as part of the experiment.

An Event Stream Using this Network Interface

An Event Detection is triggered within the game engine when a particular

condition is met, and it then publishes the corresponding message.

The Message Stream communicates the event data using ROS Messages

[392]. ROS messages cater to a variety of sensor formats, from cameras, to

pointcloud data, allowing for the ROS backend to make further decisions

upon processing this data.

Registering an Event in the Robotics backend

The robotics interface, explored in Chapter 2, functions on a Task basis.

Events that are streamed on the network therefore need to be connected

to processes for task rescheduling as well as drone state changes. Using

the Topic Monitor from Section 2.6, changes in a streamed message can

be made to induce state changes which, in turn, affects task management

processes.

Until the event reaches the task management interface, the real drone

is programmed to fly using Chapter 2’s high level interface. The full

behaviour of the drone can be visualised as in Figure 3.40.

This state machine functions for a single drone: using the swarm building

blocks developed in Section 2.6, the real drone to move to certain way-

points indefinitely. When a virtual collision is detected by the robotics
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Figure 3.40: State Machine Implementation for Collision Experiment.

Figure 3.41: Calculation of Pose Transmis-

sion Lag

Figure 3.42: Calculation of Collision Lag

Time

backend, it induces a state change. The next state loads a custom trajec-

tory on the drone, which is executed, before returning to an its looping

trajectory.

In the next section, an experiment demonstrates the proposed workflow

with a collision between a drone and a virtual body, and then to examine

the performance of such a system.

3.4.5 Performance Analysis
We set up a virtual interface between real and virtual objects in real time.

This MR simulation consists of a network interface between a robotics

backend (ROS) and virtual environments (Unity3D). Similarly to [369],

the pipeline is then evaluated in terms of communication latency for two

separate scenarios.

▶ when transmitting parameters into the simulated environment

▶ when transmitting parameters to the robotics backend.

Prediction

Latency of drone pose into a virtual environment

The latency of the pose injection is measured by determining the time

difference between the ROS position and the time when it was received

by the simulator.

Latency of event from the simulator to ROS

We can answer the performance question by investigating the lag time

between the moment of collision and the moment the drone reacts. We

choose the moment of a Virtual Collision because it is the ideal moment

of a collision between the drone’s virtual avatar, and the bot agent. The

collision lag time is illustrated in Figure 3.42.
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Figure 3.44: Superposition of logs from

Unity (green) and ROS (red).

Figure 3.45: The frontview, sideview and

topview are taken with respect to this

frame of reference.

Method

The time of different events is recorded as shown in Figure 3.43. The

experiment runs as such:

1. a single drone is flown in the Flight Arena and it is virtualised as

the drone agent.

2. Likewise, a virtual bot agent flies a trajectory in a game Engine.

3. When the drone and the bot collide, the drone is designed to react,

by flying a pre-programmed spiral trajectory.

(a) Determining the latency of injected pose data (b) Determining the latency of state changes

Figure 3.43: Data logger setups for both experiments

This requires two separate data loggers: the one, monitoring the Unity

environment, logs the timestamp and pose upon the virtual collision,

and the other logs the timestamp of the drone State Change from within

the Task Manager.

3.4.6 Results
Real-to-virtual Recorded Positions The drone poses are obtained

through ROS and the simulator. In Figure 3.44, these posees are su-

perposed. The drone can be seen in green for ROS-times at high-rate

sampling (120Hz) and in purple for Unity-times at a lower sampling

(10Hz). The positions superpose perfectly. This is expected. This low

sampling is sufficient to show the accuracy of the real-to-virtual proce-

dure.

Real-to-virtual Timestamps A second graph examines the differences in

timestamps of simulator time (green) relative to ROS-time (red). Figure

3.46 shows a substantial lag in positions.

The avatar positions occur "before" real positions. This is due to the logs

being based on simulation time, which records events slower than real

time. This simulator clock seems to be affected by a system latency.

Latency of Pose Injection We determine the latency of elements when

injected into the virtual environment. The latency of the system is

associated to the time between simulation and ROS time when recording

the same drone pose. The resulting graph is plotted in Figure 3.47 and

shows a linear trend.

By adapting a linear regression, we determine a gradient of 89t ms of

cumulative latency.
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Figure 3.46: Pose Latency Graphs: Z position of Drone over time,

for avatar (green) and real drone (red).

Figure 3.47: Accumulated Latency of System (in Seconds).

Figure 3.48: Legend for Collision Graphs.

Latency During State Change In order to visualise the event sequence,

each collision is assigned a red marker, with the moment of robotics

backend state change being assigned a yellow marker. All the colli-

sions are taken from the virtual logs and assigned ROS-compatible

timestamps.

The first plot shows a timeline view, where the moments of start and end

of the experiment clearly show a change in Z, on three different occasions.

These three collisions are associated to state changes.

These three collisions in particular are investigated, occurring 15 seconds

from each other. Each collision latency is calculated according to the

method set in the methodology. Figure 3.51 demonstrates a growing lag

time that approximates an exponential - a similar performance bottleneck

to the previous section.
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(a) Z position of Drone (green) and Bot (purple) over time

(b) Trajectory along the Side Plane (YZ)

Figure 3.49: Collision Graphs of the Latency Experiment

Figure 3.50: Exponential fit for exit latency

Figure 3.51: Resulting Latency of System with Time.

This trendline is modelled after an exponential as follows:

𝐿𝑜𝑢𝑡 = (6.67589 × 10
−8)𝑒0.190664𝑡

ms (3.6)

We can model the full end-to-end system latency as the addition of

the (6.68 × 10
−8)𝑒0.19066𝑡

ms latency and the 98t ms above: 89(7.5 ×
10
−7𝑒0.19066𝑡 + 𝑡)ms

𝐿𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐿𝑖𝑛 + 𝐿𝑜𝑢𝑡 = 89(7.501 × 10
−7𝑒0.190664𝑡 + 𝑡)ms (3.7)
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Figure 3.52: UAV poses as measured by

the GCS simulator in [359]

3.4.7 Evaluation
Similarly to the Swarm Application Interface of Chapter 2, Flightmare

offers several tasks as part of their simulator, however they do not

undergo tests with real hardware. This discrepancy naturally reflects in

the differences in latency, where our system is dependent on a robotics

backend on top of a simulator. This chapter can be considered a perception

pipeline as opposed to a set of tests that undergo in simulation.

As opposed to simulators with an independent block for the physics

engine, this experiment has focused mainly on visualising drone flight.

Flight physics modelling is deliberately excluded. This lends itself well

to a more photo-realistic, but slower, configuration.

On a functional standpoint, the proposed workflow worked as expected.

A virtual body did come in collision a number of times with the drone’s

avatar; through event data, the drone has reacted accordingly. This

sequence of events was ensured by the choices of software architec-

tures.

To respond to the performance question, we focus on the three key

aspects highlighted in the Mixed Reality literature review:

▶ Fast prototyping of new environments: programmability.

▶ A wide suite of sensors and of physical effects: variability.

▶ A true-to-reality physical environment: the physical model.

While the Mixed Reality Interface provides us with a simulated graphics

engine, a communication channel was put in place that would communi-

cate virtual events to the robot swarm. However, the collision experiment

has demonstrated a cumulative delay of 89t ms for a single quadrotor,

and this can only increase with larger swarms and more complex ma-

noeuvres. Since latency is a primary measure for image streaming and

high performance drone tasks, we suggest the exploration of a network

interface more focused on performance, and possibly the integration of

existing simulators like Flightmare within the testbed.

Table 3.6: Key findings in Chapter 3.

Test Description Result

Gesture Piloting
Gesture Recognition Effectiveness 56.3%

System Response Time 271.0 ms

Mixed Reality Interface
Latency of Pose Transmission (6.68 × 10

−8)𝑒0.19066𝑡
ms

Latency of State Changes 89t ms

System Latency 89(7.5 × 10
−7𝑒0.19066𝑡 + 𝑡)ms

Summary

According to [359], a fully functional GCS provides for research capabili-

ties which cannot be achieved through R/C flight alone. They emphasize

Parameter Identification (PID) research as an alternative for flying a

UAV by tracking values of flight and performing precise maneuvers.

The second emphasis is into "research into new applications of subscale

aircraft for otherwise dangerous or long mundane tasks". These goals
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echo the elements for live performances and flight recording used in our

testbed.

Preiss et al. [376] envision that mixed reality would interconnect a wide

variety of physical spaces for collaboration. Humans can work safely

within their own physical confines, while their intelligent counterparts

can operate in more hazardous environments.

With these new mixed reality tools, Preiss et al. position their robotics

testbed as "serving to acclimate end users with autonomous systems".

They believe their approach is also well suited for mixed reality prototyp-

ing since they "will be able to substitute networking and AI components

with alternative implementations", for instance by substituting onboard

path finding onto offboard components. They further demonstrate that

peer-to-peer networking can better simulate intercommunication be-

tween drones. With this, Preiss et al. uphold that mixed reality is a vital

addition to better human-drone interfaces.

This chapter demonstrates a similar vision, through the practical means

of human-agent interactions. With the data streaming interfaces of this

Mixed Reality section, as well as from the Piloting section, this shows

that new modalities can be created for autonomous vehicles.

Using the networked approach of events and sensor data, further tasks

can be prototyped. This aligns with the goals of better service drones.

Using the example tasks developed in the previous chapter, various GNC

algorithms can be programmed, developed, and tested on hardware

conditions.

This method encompasses a major amount of development on the drone

platform. From the development of a custom backend, to the interconnec-

tion of a graphical simulator, this completes an ecosystem for research

and development. While this work has been in major part, infrastructural,

it opens the door to the development and testing of GNC algorithms, for

instance Reinforcement Learning algorithms, a common occurrence in

recent robotics.

3.5 Conclusion
This chapter presents a streaming architecture for piloting UAVs using

a webcam, and various forays into Human-Drone interactions. This

architecture, which makes use of the drones’ command architecture, but

also of a shared network, has lent itself to integrating various inputs –

in this case webcam images. The output of this exercise is evident in

the precision of the drones’ movement, as it was noticed in the various

visualisations of the data.

However, While the Mixed Reality Interface provides us with a simu-

lated graphics engine, a communication channel was put in place that

would communicate virtual events to the robot swarm. However, the

collision experiment has demonstrated a cumulative delay of 89t ms

for a single quadrotor, and this can only increase with larger swarms

and more complex manoeuvres. Since latency is a primary measure

for image streaming and high performance drone tasks, we suggest the

exploration of a network interface more focused on performance, and
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possibly the integration of existing simulators like Flightmare within the

testbed.

Using the networked approach of events and sensor data, further tasks can

be prototyped. Various GNC algorithms can be programmed, developed,

and tested on hardware conditions.

All in all, this work has come to demonstrate that a swarm setup can be

rather easily adapted to human-drone research, and despite the perfor-

mance bottlenecks, it succeeds in providing an end-to-end experience for

the pilot, and further work should aid in streamlining this.



Figure 4.1: example of a remote-sensing ve-

hicle: The DJI’s Matrice 600 for Measuring

Land Surface Albedo [400]

Figure 4.2: An environment for outdoor

deployments.
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4.1 Introduction
UAVs provide us with a novel way to capture data; they help us to gain a

perspective of the Earth that is simply not possible with instruments that

are based on the ground. In contrast with the platforms of manned aircraft

and satellite, the UAV platform holds many promising characteristics

[339]: flexibility, efficiency, high-spatial/temporal resolution, low cost,

easy operation, etc., which make it an effective complement to other

remote sensing platforms and a cost-effective means for remote sensing.

As a result, low-cost, light-weight UAVs have been used extensively

within research for more than a decade to measure, for instance, air

quality, mapping of 3D geodata and remote sensing within agriculture

[342]. However, until recently, UAVs were build with a single purpose

and with one particular sensor on board.

From about 2010, the stability, flight duration, and load capacity of UAVs

increased significantly with the development of flight-control and battery

technology, which enable more sensor varieties (optical sensor, lidar

or radar) to be mounted on smaller UAVs [351]. Figure 4.1 alongside

demonstrates this: a multi-rotor based UAV platform was developed and

tested for measuring land surface albedo and spectral measurements

at user-defined spatial, temporal, and spectral resolutions. This drone

onboards an RGB camera and a set of four downward pointing radiation

sensors.

In line with the thesis goal, we pay attention to the interplay between

smart systems, and the real-world deployment of a UAV. The carrier drone

aids in streamlining the data collection process, by automating different

fly-by procedures, safeguards, and scheduling the data collection. Two

payloads are tested in outdoor flight, for atmospheric data and vibration

data, and the sensors used in these tests are evaluated. In this way,

onboard systems can aid with the practitioner’s task.

4.2 Related Work
In the literature, there is increasing reference made to the potential of

using UAVs as autonomous or semi-autonomous operating data acqui-

sition platforms, often referred to as Mobile Sensing Platforms (MSPs)

[341] [342]. They can be equipped with state-of-the-art measurement

instruments offering extremely high resolution and are ideally suited

to access otherwise prohibitingly inaccessible locations or to operate in

hostile environments that would be lethal to the human operator.

The field scope is restricted to mobile sensing upon UAVs. Furthermore,

the focus is in data inspection and data gathering in outdoor inspections as

opposed to inspecting underground and pipeline plants, as well as urban

spaces, as opposed to powerplants, solar farms, wind farms, or precision
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Figure 4.3: A low-cost, open-source, mod-

ular sensor platform [341].

Figure 4.4: Impulsive launching of sensors

to monitor the health of forests [345]

agriculture. As a result, we have restricted our investigations to two sectors

of research: remote sensing research and structural inspections.

4.2.1 Remote Sensing Research
We see great growth in mobile mapping research, that is “the acquisition

of spatiotemporal phenomena by using a mobile multi-sensor platform”

[343]. The UAV is a platform that greatly simplifies research. One such

field remote sensing, the acquisition of information about an object or

phenomenon without making physical contact with the object [344].

Recently, UAVs have enabled research towards contact sensing, for the

acquisition of information in direct contact with the object [345], on a

platform that serves for optimal sensor placement [345] [358].

In contrast with other aerial platforms like manned aircraft and satellite,

the UAV platform holds many promising characteristics [339]: flexibility,

efficiency, high-spatial/temporal resolution, low cost, easy operation,

etc., which make it an effective complement to other remote sensing

platforms and a cost-effective means for remote sensing. As a result,

low-cost, light-weight UAVs have been used extensively within research

for more than a decade to measure, for instance, air quality, mapping of

3D geodata and remote sensing within agriculture [342]. However, until

recently, UAVs were build with a single purpose and with one particular

sensor on board.

[341] Lars Yndal Sorensen, Lars Toft Jacobsen, and John Paulin Hansen
propose a multi-sensor platform based on commercial off-the-shelf

components that provides a modularized sensor system and data ac-

quisition infrastructure. This "Mobile Sensor Platform" (Figure 4.3) is a

commercial quadcopter that allows for attaching external sensors and

relaying the data back to a ground station using a telemetry communica-

tions link. The platform supports a simple and expandable interface for

attaching custom sensors to the UAV, overcoming the limitation of single-

purpose platforms which are costly to convert for other tasks.

Unmanned aerial vehicles have been shown to be useful for the installation

of wireless sensor networks. Wireless sensor network (WSN) technology

refers to a group of sensors used for monitoring and recording the

physical conditions of the environment and organizing the collected data

at a central location [342]. Sensor nodes can be placed more accurately

with the development of autonomous aerial robots capable of physically

interacting with the environment.

[345] Andre Farinha et al. present a novel method for aerial sen-

sor placement in hazardous environments. This method is applied to

Wireless Sensor Network deployment. The proposed system does not

require direct physical interaction to accurately place sensors which

brings significant advantages in cluttered environments and in overall

operational safety.

4.2.2 Structural Inspections with UAVs
[347] Shi Zhou and Masoud Gheisari explore peer-reviewed bibli-

ographic databases and offer an interesting picture of the last 10 years.

A growing number of publications are identified, and the publications
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Figure 4.5: Bridge inspections with a

snooper truck [401] (2016).

Figure 4.6: Bridge inspections, with a

Laser Prism. [402]

Figure 4.7: 100 Hz geophones plus record-

ing electronics attached on a 3DR Solo

Quadcopter drone. [358]

Figure 4.8: Final Drone Setup

are classified by Shi Zhou and Masoud Gheisari into five main topic

categories: building inspection, damage assessment, site surveying and

mapping, safety inspection and progress monitoring.

Drones are a disruptive technology regarding the structural assessment

for reinforced concrete bridges [401]. Inspectors used to employ ladders,

scaffolding, or lifters to reach the parts of beams and piers of the bridge

that are not easily accessible. In contrast to inspections done by snooper

trucks(Figure 4.5), the inspection detail that UAS provide effectively

replicates some of the detail learned through the use of snoopers ,

without the traffic control requirements, and at significantly lower cost in

terms of equipment and traffic control needs [401]. UAS can provide both

infrared and 3D modeling detail of bridges, effectively identify concrete

delamination, cracks, rebar corrosion, topographic mapping detail and

other visual inspection.

[402] Kun Feng, Miguel Casero, and Arturo Gonzalez affect direct

contact of the sensor or device with the bridge surfaces. Structural

inspections of the internal state of a bridge require the measurements

of beam deflections with direct contact. An operator manually places

a reflector prism attached to a pole in contact with different points at

the beam and then measures the position of the prism with a laser total

station.

[358] Robert Stewart et al. design and test an unmanned aerial

vehicle with seismic sensing capabilities. The seismic sensing platform

consists of four 100 Hz geophones and recording electronics. This is

attached to a 3DR Solo Quadcopter drone. The geophone spikes become

the drone’s landing legs. The drone and its geophone payload have

been successfully flown a number of times with take-off, programmed

or remotely controlled navigation, landing, and recording. We have

conducted tests (using hammer and weight drop sources) to compare

the response of the landed seismic-drone system to planted geophones

and a conventional cabled seismic system. The seismic traces from the

drone are assessed as similar to those of the planted geophones.

4.3 Carrier Drone Design
A carrier drone is developed to simplifying the integration of new sensors

in preparation for outdoor operation. An unmanned aerial vehicle system

has two parts, the drone itself and the control system. The design elements

examined here are the following:

▶ Drone Components: onboard sensors and navigational systems

for stable, semi-autonomous flight.

▶ Control system: Flight system features like piloting modes and

datalinks that are specific to the types of operation.

▶ Navigation parameters: safeguards and automated parameters to

provide safe and secure flight.

This sections examines the flight-related functionality, including piloting

features, navigation safeguards and other automation tools. Sections 4.4

and 4.5 document the design of two modular payloads for collecting

Atmospheric Data and Vibration Data.
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Figure 4.9: Carrier Drone Design and Flight Environment.

Figure 4.10: The F450 drone, along with

(clockwise from top) a Power Distribution

Board, a GPS setup, propellers and motor-

ESC pairs.

Figure 4.11: The Pixhawk4 and GPS: an

advanced autopilot adopted by academic

and commercial developers [403].

Figure 4.12: Carrier Design, step 1.

4.3.1 Onboard Components
The body of an unmanned aerial vehicle is designed for propulsion, via

electrical motors and their associated navigation system. This is where

all the sensors and navigational systems are present.

Drone Frame and Power Distribution

The UAV chosen for this system is the DJI’s F450 Flame Wheel frame, a self-

assembled platform designed for aerial photography and entertainment

purposes. This quadrotor is common in research as it provides the space

required to assemble new modules [341] [357].

The F450 is comparatively larger than many other drones; however, it is

built of light-weight stiff carbon fibre and the battery and GPS can be

stored away. It has an approximately 40 minute hover time without a

payload and 20 minutes with maximum payload (3kg).

Flight Autopilot Controller

The Flight Controller has inputs both from the Ground Station and

the RC Controller. It acts upon the UAV Motors, logs data from the

sensors and interacts with various payloads. Pixhawk [403] is an industry

standard autopilot developed and jointly developed by 3DR Robotics

and Ardupilot Group. Various robots such as RC cars, airplanes, and

multicopters can be made, and firmware is provided for them using

Pixhawk. Motor control is achieved automatically, with enhanced stability

to recover from wind surges.

Onboard Sensor Selection

The carrier drone aims to simplify the integration of new sensors and

associated data acquisition systems. To do this, a modular approach is

adopted, whereas the setup is designed to simplify the board reconfigu-

ration in new flights.

Custom criteria are used to better understand the level of modularity for

several sensor systems.

▶ Large Field of View: Whether said sensor requires a large field of

view for optimal functioning,

▶ Vibration Sensitivity: the vibration sensitivity of equipment in

the case of parasitic vibrations. This element is desirable when

carrying vibration-sensitive loads, for instance lidars, or items that

might dismantle with vibrations.
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Figure 4.13: DAQ Installation

▶ Independent Power Source: an independent power source in the

case of self-powered electronic circuits.

Table 4.1 looks at four possible sensor systems.

Table 4.1: Payload Selection Matrix.

Criteria Vibration Atmospheric Rangefinder Camera

Data Data Data Stream

Independent Power Source • • ◦ ◦
Vibration Sensitivity • ◦ • •
Large Field of View ◦ ◦ • •
Selection ✓ ✓ ✗ ✗

With a fully independent power source and less importance on the field

of view, two sources of data are examined in more depth: the Vibration

Data Subsystem and the Atmospheric Data Subsystem. The two DAQ

systems are designed as independent subsystems.

DAQ Onboard Setup

A payload box can be used to encapsulate these subsystems, such that

each module can be installed and removed during on-site drone reconfig-

uration. In the next section, a rectangular box is designed and 3d printed

to attach upon the UAV. This box is designed for a variety of payloads. It is

screwed on and can be removed easily, making it highly modular.

Figure 4.14: Renders of payload box.

The payload box offers an open window for cabling, as well as interstitial

walls for the battery and the slice module. Using this design, the DTS

Slice is installed on the UAV, with a Battery as an energy source. The end

result fits neatly on the drone (Figure 4.13).

4.3.2 Flight System
The software controlling the UAV is a combination of elements. The

flight system consists of a drone and all its associated components, for

navigation, for the mounting of sensors, and for the logging the collected

data. Figure 4.8 presents the final drone configuration.

The flight system consists of a drone and all its associated components,

for navigation, for the mounting of sensors, and for the logging the

collected data. Figure 4.8 presents the final drone configuration.

The data acquisition systems seen here (DTS Slice and Arduino Nano)

are expanded upon in Sections 4.4 and 4.5.
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Figure 4.15: Expanded View of the UAV Ecosystem

Figure 4.16: Carrier Design, step 2.

Figure 4.17: The Taranis X7 Remote Con-

trol: a reprogrammable remote for RC

flight [404].

Figure 4.19: An environment for outdoor

deployments.

UAV Flight Stack

We chose to use the open-source PX4 flight stack [403] on the Pixhawk,

running on top of the Nuttx real-time operating system. It has a number

of mission critical features that are favorable for our research require-

ments. PX4 has a large research-oriented community of open-source

practitioners, and tools for programming custom applications.

Remote Controller and Datalink

The Taranis is a common drone flight RC controller [405]. It features

24 channels with a rapid baud rate and low latency, thanks to its high-

speed module digital interface. The Q X7 transmits in the 2.4GHz range

provides a secure and reliable link.

The OpenTX firmware [405] onboard the Remote Controller offers the

possibility of assigning various switches to different flight modes, such as

an arming mode in Figure 4.9. Using two switches, we alternate between

modes in the following order:

(a) 1-1 (b) 2-1 (c) 3-1

(d) 3-2 (e) 2-2 (f) 1-2

(g) 1-3 (h) 2-3 (i) 3-3

Figure 4.18: Switch combinations and order of transitions.



4 In Vivo Deployment for Industrial Environments 186

Figure 4.20: QGroundControl: an in-flight

communication station [403].

Figure 4.21: Carrier Design, step 3.

Figure 4.22: Carrier Design, step 1.

(a) Wall Thickness

(b) AET vibration damping material

Figure 4.23: Installation of Damping Ma-

terial

Using this technique, there are 9 modes that can be assigned a function-

ality. In this way, the pilot is given access to automatic functions. These

assignments are done in Section 4.3.3.

Ground Control Station and Telemetry

Ground Control Stations (GCS) are sets of ground-based hardware and

software that allow UAV operators to communicate with and control

a drone and its payloads [351]. The QGroundControl ground control

station [403] is used to communicate with the Pixhawk Autopilot via

a Telemetry Radio. The communication is ensured by a Serial UART

connection (MAVLink protocol [403]).

4.3.3 Configurations for Flight Operation
Through the software outlined above, the drone can be remotely con-

trolled or fly autonomously. Further mode configurations assist to pro-

gram the drone for specific tasks. A flight setup is adopted here for

the experiments in the next chapters, that is advantageous in terms of

ease-of-use, programmability and safety.

Pilot Configuration

The switch is used to coordinate multiple flight modes. These modes

are useful to alternate between very controlled motion, and smoother

motion for data acquisition.

These three modes are configured to switches 1-1, 1-2 and 1-3. In a single

flight operation, Position mode is used to position the drone at a hover,

Altitude Mode is used to move on a horizontal plane, and Stabilized

mode is used to move freely in 3D space.

4.3.4 Damping Optimisation Study
The last criterion of the design process is the safety of payloads onboard

the drone during flight. For this reason, the payload is required to be

vibration-sensitive.

The goal of this section is to minimize the vibrations experienced by

the payload during flight. A damping test is carried out to determine

the amount of damping material on the payload box. This procedure

forms part of the drone design process determine an optimal damping

volume.

Hypothesis

More shock absorption material leads to a smoother frequency re-

sponse.

Prediction

Two payloads A and B are attached to the drone. They vary by the

amount of damping material (see Figure 4.23). The hypothesis is vali-

dated if payload A has better damping sensibility than payload B. The
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Test Description

Test Date 23/08/2021

Test Time 11:30:49

Sample Rate 25000 Hz

Hardware AA Filter 5000

Data Channels 2

Accelerometer Type 3055B2T

Nb of Post-Zero Data Pts 750002

Table 4.2: Parameters of the Payload

Damping Test.

damping sensibility is associated to the Frequency Response of each

payload.

Methodology

Measurement Equipment Setup Our approach is a comparison of vibra-

tions experienced by the drone payload during flight, compared to the

vibrations on the drone frame. We do so by gathering acceleration data.

For each flight, two accelerometers are used: a reference accelerometer on

top of the drone serves as the control, as well as a payload accelerometer

installed within the payload box (Figure 4.24).

▶ Payload A has 8 mm high absorbers.

▶ Payload B has 4 mm high absorbers.

AET material is used as shock absorbers in the payload attachment

(Figure 4.23). It is fitted between the payload and the drone, and screwed

tight. This is the only point of contact.

Figure 4.24: View of the two accelerometers in Experiment setup

Acquisition Parameters The DTS Slice is set up according to a few parame-

ters. DAQ parameters are listed in Table 4.2. The DAQ was sampled at

25kHz. The anti-aliasing filter (AA), output scale factor and sampling

rate are defined, among other factors.

Experiment Procedure This experiment has two phases: in the first,

Shock absorbers A are fitted; in the second, Shock absorbers B are fitted.

This test proceeds in the following manner:

1. The drone is fitted with Payload A: a payload with a greater volume

of shock absorber. See Figure 4.24 as a reference.

2. The drone is flown for 1 minute: forward, backward, to the left, and

to the right. It is then landed.

3. The drone is fitted with Payload B: a payload with a smaller volume

of shock absorber.

4. The experiment repeats.

Post-processing For each test, we calculate the PSD functions using the

Welsh method, and calculate a ratio of the payload accelerometer’s PSD

over the reference accelerometer’s PSD. This produces the Frequency

Response Function.

Dataset The procedure was carried out on 23 August 2021 in an indoor

parking space. The Google Drive experiment dataset [406] and a Youtube
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presentation video [407] are publicly available.

Results

PSD Plots For each of the two payloads, we calculate the PSD functions

using the Welsh method (Figure 4.25).

(a) PSD Graph for Payload A and Reference (b) PSD Graph for Payload B and Reference

Figure 4.25: Development of the Gain Graphs to compare Payload A and B

Frequency Response Function We calculate a ratio of the payload ac-

celerometer’s PSD over the reference accelerometer’s PSD. This produces

the Frequency Response Function (Figure 4.26).

Figure 4.26: Gain difference between the two payloads

The Frequency Response graph spikes notably in frequencies above 8000

Hz. These appear to be unstable behaviour at the extremes. However,

when examining this in relation to the FFT-graph about 8kHz, we see

that the input and output magnitudes are very small values, and their

ratio evidently produces this unstable behaviour. These are not in the

range of interest and can be neglected.

The initial hypothesis assumed that more damping material would be

associated to better damping. This result suggests that the volume of

material may help at higher frequencies, but this has no apparent benefit

in the 1-2kHz range of interest.

Conclusion

Through the means of a payload damping test, the hypothesis is rejected,

insofar as more shock absorption material did not give a lower gain in the
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Figure 4.27: Factories besides a body of wa-

ter. Many organisations aim to use drones

to scan air pollution in the surrounding

areas.

Figure 4.29: The Arduino Nano: a small,

breadboard-friendly, rapid prototyping

board [408].

Figure 4.30: Setup Step 1.

frequency response. Since the objective of this test is about maximising

the damping in the range of interest, Payload A is installed onto the

drone. We suggest that that this test be carried out over a wider range of

materials, and for other types of flight, in order to determine an optimal

damping volume for different drone designs.

4.4 Semi-autonomous scan of a zone
Environmental sensing usually requires substantial time for data collec-

tion or more distributed sensing systems. The use of atmospheric sensors

is a major element in remote sensing [342]. With a platform that can

carry multiple types of sensors, a simple field scan can help understand

the limitations of a drone task, and the potential for further operations.

As an air monitoring solution, this demonstration can be extended to

industrial-type solutions, such as air pollution monitoring [341]. All these

factors show that drones form part of a trend towards service automation

for industrial purposes.

We do remote sensing upon a UAV to simplify the task of environment

sensing. A drone is equipped with remote sensors. It is flown in a field

where it detects physical changes in the environment: lighting, humidity,

and temperature. This data is then processed to determine the effective-

ness of the survey. A presentation video is available (Google Drive) [371].

The experiment data is available on Google Drive [370].

4.4.1 DAQ System Design
This section documents the design of the Atmosphere Data Payload

selected in Section 4.3.1. It is composed of three stages.

Figure 4.28: Preparation of Atmospheric Data Collection.

The payload is installed on the drone in Step 1. Flight procedures are

designed in Step 2. The DAQ Activation is done in Step 3.

System for Low-Cost Sensors

The Arduino sensor range is chosen for prototyping for its low-cost sen-

sors. Using an Arduino Nano [408], such sensors can be easily integrated.

The Arduino Nano is sold as a small, complete, and breadboard-friendly

board based on Arduino’s larger counterpart, the ATmega328. It only

weighs 7g with minimal volume.

Module Design

Two separate modules are designed for the Atmospheric Data and the

Vibration Data. In each, an independent battery powers the logging unit,

and the sensors attached to it. The Pixhawk board is included in the first
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Figure 4.32: Setup Step 2.

system since some the GPS and luminosity sensor are logged via the

Pixhawk board.

(a) Arduino DAQ Components (b) DAQ Integration on the UAV

Figure 4.31: Arduino DAQ setup for field scan

DAQ Control Layer

The DAQ is configured to activate and deactivate the datalogging process

on command. To achieve this, we use custom activation firmware on the

PX4 operating system.

Table 4.3: DAQ Activation Procedure.

Boards Switch Activation Deactivation Prior to Activation

2. Arduino Nano 2-2 On boot On shutdown None

3. Pixhawk 2-1 On boot On shutdown None

The data-logging activation file was coded in C++, and compiled into

an executable via the MAVLink protocol. During operation, it toggles a

pin (Pixhawk’s FMU Channel 6), which is then detected by the Arduino

Nano in order to begin and end the logging on the Datalogger.

A separate custom logger detects Arduino activation and records its

timestamp in the PX4 debug log.

4.4.2 Sensor System Evaluation
Aim

Using three separate atmospheric variables, we determine the accuracy

of the drone sensing solution.

Prediction

Sunlit and shaded regions were scanned for relative humidity, luminosity

and ambient temperature. The drone’s flightpath is changed randomly by

the operator to create region overlaps. The trajectory plots demonstrate

any inconsistencies in the readings. We determine the maximal variation
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Figure 4.33: Setup Step 3.

Figure 4.34: Presentation video [371]

per second and per meter as a measure of the fluctuations in lighting

and in temperature.

Method

Measurement Equipment Setup Instruments that were used in the system

are pictured in Figure 4.31. These include the DH11 Temperature and

Humidity sensor, as well as a 5mm LDR Luminosity Sensor, and finally,

the companion GPS. A particularity is that the DH11 is attached to the

Arduino Board, and Logged with the use of an Arduino Data Logger,

while the 5mm LDR is connected to an ADC input on the Pixhawk board,

containing a self-enclosed data logger.

The Pixhawk logger supports 100Hz data logging while the Arduino

data logger averages at 10Hz logging. Both data loggers support Micro

SD cards with a capacity of up to 64GB to store high-resolution video

data, photos and flight telemetry.

Experiment Procedure The flight takes place in an empty field of ap-

proximately 100x60m, identified for the differences in lighting between

the tree shade and the sunlit field. The drone is piloted by hand. This

requires a certain method:

1. System checks (battery monitor, screws, etc.)

2. Activating the drone.

3. Drone takeoff and moving to an altitude of 2m.

4. Altitude lock.

5. Activating the Arduino data acquisition with a PX4 trigger applica-

tion.

6. Piloted flight across the field, along sunlit and shaded regions.

Data collection The data was collected on 24 August 2021, over an empty

field of approximately 100x60m. Both the lighting and the GPS data are

taken from the Pixhawk Log. They were both sampled at a frequency of

98 Hz. The Arduino Logger was activated 248s after the Pixhawk Logger.

The Arduino Logger was active for a duration of 712 seconds, of which

464s are common to both boards. Both the temperature and the humidity

are taken from the Arduino Datalogger. They were both sampled at a

frequency of 11.7 Hz.

Dataset A presentation video is available (Google Drive) [371]. The

experiment data is available on Google Drive [370].

Results

Timeline of Environment Sensor Readings There is a stark contrast

between sunny and shady regions in the data.

This is a change of 20% of the luminosity range, where sunny regions sat-

urate the sensor, and shady regions are marked by sudden drops.

Trajectory Plot Figure 4.36 plots the lighting readings over the trajec-

tory.

This confirms that the data is very sensitive to lighting differences. The

darker patches in the sunlit area might be explained by the passage of
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Figure 4.35: Temperature, Humidity and Lighting Recordings during Flight

(a) Trajectory with Lighting as a Colour

(b) Trajectory with Temperature as a Colour

(c) Trajectory with Humidity as a Colour

Figure 4.36: Plot of Drone GPS Position during Flight with Lighting represented as a Colour

clouds during the procedure.

Sensor Range in Time A first graph presents the magnitude of the

changes in light and temperature, by computing their rates of change

over time. The magnitudes are normalized by their operating ranges:

20-90% of Relative Humidity for the DHT11 sensor, 20-150mV of ADC

voltage for the LDR sensor.

Δ𝑟

𝑡
=

𝑟 𝑓 − 𝑟𝑖
𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛

∗ 100 (4.1)
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(a) Fluctuations per Second (b) Fluctuations per Meter

Figure 4.37: Fluctuations in Measurements of LDR and DHT11 Sensors

Figure 4.38: Empirical relationship [409]

According to (a), the maximum values suggest that the LDR sensor

records changes of 0.23 % to 0.69 % shift in operating range/reading vs

the DHT11 sensor’s 0.14% to 6.62 % shift in operating range/reading. The

temperature and humidity vary less rapidly, and this is very apparent in

the plots.

Sensor Range in Space To better evaluate the sensing speed, we in-

vestigate the maximum fluctuations per second, and then per meter.

This data recording speed is used in (b) in coordination with the drone

velocity as recorded by the Pixhawk setup, in order to obtain fluctuations

per meter, independent from speed. This is done with the following

equations.

Δ𝑟

𝑚
=
𝑟 𝑓 − 𝑟𝑖
𝑡 𝑓 − 𝑡𝑖

∗ 1

𝑣̄
(4.2)

The following equation is taken from [409], whereas David Williams

determines an empirical formula to convert the ADC voltage to lux for

the Arduino’s Light Dependent Resistor module:

log (𝐿𝑙𝑢𝑥) = −1.4 ∗ log{max |𝑉𝑎𝑑𝑐 |} + 7.098 (4.3)

Whereas the LDR sensor records 57.915-270.276 lux variation/meter, the

DHT11 detects 0.062-45.556 % of Relative Humidity variation/meter. This

shows the range of local changes over the field and it seems reasonable

for stark changes in light vs more gradual changes in humidity.

4.4.3 Discussion
The proposed UAV architecture has proven itself effective at capturing

fluctuating environment data. When examining the luminosity readings,

the measurements are very consistent with shade/light regions, by

changes of as much as 20% of the luminosity range. Sunny regions

saturate the sensor, and shady regions are marked by sudden drops. This

suggests a high accuracy, especially seen as the drone was piloted by

hand.

The luminosity plot demonstrates very precise readings despite the

drone’s velocity. This is facilitated by rapid data logging at 100Hz. The

fact that the drone was piloted by hand, on an arbitrary path with region

overlaps, illustrates plainly how mobile mapping is a worthwhile tool for

rapid data collection.



4 In Vivo Deployment for Industrial Environments 194

.

Figure 4.39: Instance of a water outlet

where a drone can land and monitor water

flow.

There is much less of a correlation between the readings and their position

in space. We suggest two potential issues with the DH11 sensor:

▶ Movement may affect the temperature and humidity. We recom-

mend to further investigate how the readings vary with altitude,

speed and acceleration.

▶ Heat convection on the drone and the sensor itself may be recorded

by the sensor instead of environment temperature. We recommend

to further investigate how accumulated heat affect the readings.

Additionally, this experiment demonstrates that a payload drone can

be extended to other types of sensors for other applications. The data

acquisition setup proves to be functional. This setup was developed

prior to the experiment with the goal to integrate many other types of

sensors.

The flight was quite smooth and simple to undertake. As opposed to

conventional means of environmental sensing [339], this flight requires

no site preparation. This is largely due to the selected drone system, as

well as the work done to automate the data acquisition procedures.

This procedure was greatly assisted by the datalogger, whereas GPS data

and atmospheric data could be correlated without major issues. The

correlation between different elements have uncovered a topography in

an unexpectedly accurate manner. As we examine the systems that aid in

practice, we note the importance of the drone as a platform for capturing

scans of a 3 dimensional environment in a rapid, and timely manner. At

the time of writing, Alliantech is compiling a marketing video for this

environment sensing solution.

4.5 Structural Inspection of Vibrations
We sometimes wish to monitor the vibrations of a large structure. With

conventional methods, this usually requires reaching the zone by foot and

attaching the sensor in some form, and these pipes may be in dangerous

or inconveniently placed. For example, it is a challenging task to monitor

water flow through a sewer outlet pipe (Figure 4.39). In this project, we

explore sensor placement with a UAV to demonstrate a simpler way to

do vibration monitoring.

We designed a drone to land on the measurement site. To do this, a drone

is equipped with the vibration data acquisition systema. A vibration

probe mount is designed to fit the accelerometer on a leg of the drone. This

full system is evaluated, first to determine whether it detects footsteps

accurately, and the second to determine a range of frequencies at which

the setup remains functional.

4.5.1 DAQ System Design
This section documents the design of the Vibration Data Payload selected

in Section 4.3.1. It is composed of three stages.

The payload is installed on the drone in Step 1. Flight procedures are

designed in Step 2. The DAQ Activation is done in Step 3.
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Figure 4.40: Preparations for Vibration Data Collection.

Figure 4.41: The DTS SLice Micro: a minia-

ture, modular, rugged data acquisition

system [410].

Figure 4.42: Setup Step 1.

Figure 4.44: A conventional vibration

probe tip is pressed against a surface by

hand.

System for High-Sensitivity and High Sampling Rate

The Micro Slice by DTS [410] is a modular data acquisition system fea-

turing unmatched flexibility and reliability for critical test applications.

UAV flight is once such application that requires a small, reconfigurable

and robust system. They offer a wide range of sampling rates of 10Hz to

500kHz and data storage of up to 16Gb. The Slice is used in aerospace

analysis, automotive safety, biomechanics, and other safety-critical appli-

cations.

Module Design

An independent module is designed for the Vibration Data. An indepen-

dent battery powers the logging unit, and the sensors attached to it. The

Pixhawk board is included in this system since the Slice is armed via the

Pixhawk board.

Figure 4.43: DTS Slice DAQ Subsystem

Instruments that were used in the system are pictured in Figure 4.43.

These include a 3055B2T accelerometer and a data logging system. This

accelerometer is directly connected to the DTS slice data acquisition

system, which is a self-enclosed data logger.

Drone Mount Design

Hand probes are conventionally used to in frequency response tests on

the terrain, as shown in Figure 4.44. This is used in our design to make

contact between the drone and the ground. A mounting part is required

to fix this hand probe to the drone. A part is designed and 3D printed for

this purpose.

This mount places itself in the place of a drone leg (Figure 4.43). It

measures the same size as the other legs, such that the drone’s weight is

equally distributed on the drone legs.
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Figure 4.45: Renders of vibration probe mount.

Figure 4.46: Installation of External Accelerometer

Figure 4.47: Setup Step 2.

Figure 4.48: Setup Step 3.

DAQ Control Layer

The DAQ is configured to activate and deactivate the datalogging process

on command. To achieve this, we use custom activation firmware on the

PX4 operating system.

Table 4.4: Flight Mode Assignment for RC Controller.

Boards Switch Activation Deactivation Prior to Activation

1. SLICE Micro 1-1 Custom App Custom App Arming

2. Pixhawk 1-3 On boot On shutdown None

The data-logging activation file was coded in C++, and compiled into

an executable via the MAVLink protocol. During operation, it toggles a

pin (the Pixhawk’s FMU Channel 6), which is then detected by the data

acquisition system in order to begin and end the logging.

The Pixhawk logger is used to log debugging messages at 100Hz, while the

Slice data logger ranges from at 1kHz to 500kHz logging. The Pixhawk

data logger is fitted with a 16Gb Micro SD card while the DTS slice

supports up to 16Gb of memory.

4.5.2 Experiment 1: Detection of Footsteps
Experiment Procedure

Flight Procedure The experiment is conducted indoors. As the subject of

the experiment is the measurement of vibrations, a sequence of steps is

put in place.

1. The data acquisition system is activated.

2. The drone is flown and lands.

3. The passer-by walks at 1m from the drone.

Data Collection The DTS Slice is set up according to a few parameters.

DAQ parameters are listed in Table 4.5.

The DAQ was sampled at 10kHz. The anti-aliasing filter (AA), output

scale factor and sampling rate are defined, among other factors.
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Table 4.5: Parameters of the Footstep Detection Test.

Test Description Ground Accelerometer (ref)

Test Date 23/08/2021

Test Time 16:08:18

Sample Rate 10000 Hz

Hardware AA Filter (-3dB) 2900

Data Channel Number 1

Channel Description 3055B2T_REF

Software Filter (SAE Class) NONE

Software Filter (-3dB) NONE

Engineering Unit g

Number of Pre-Zero Data Pts 0

Number of Post-Zero Data Pts 240042

Data Zero (CNTS) 57

Scale Factor (EU/CNT) 0.003781480491161

Scale Factor (mV/CNT) 0.378148049116135

Dataset The procedure was carried out on 23 August 2021 in an indoor

parking space. The Google Drive experiment dataset [406] and a Youtube

presentation video [407] are publicly available.

Results

The raw data is represented as the red markers in Figure 4.49.

Figure 4.49: Raw data and final sensitivity curve

This raw data has considerable drift, which is due to an uncalibrated tool.

This is a common issue when measuring with a single accelerometer as

per [372]. To mitigate this drift, we make use of a Butterworth band-stop

filter in Python, as it has a maximally flat frequency (ie. no ripples in the

passband). This makes it one of the most popular and used band-stop

filters.

1

2 filtered_data = butter_bandpass_filter(raw_data, start_hz=7,

3 end_hz=12, sample_hz=25000, order=5)*0.8

Figure 4.50: Parameters for Band-stop Butterworth Filter

The filter is run between 7Hz and 12Hz, on a sampling frequency of

25kHz. The filter’s transfer function is:

𝐻(𝑧) = (𝑧−2 + 2𝑧−1 + 1)3
(𝑧−2 − 1.9𝑧−1 + 0.9)4 (4.4)
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Figure 4.53: Footsteps as detected by [372]

The result is the following graph.

Figure 4.51: Filtered vibration curve

A single footstep is isolated from 23s to 28s. This data shows each footstep

clearly with a gradual increase in signal amplitude (energy) followed

by a gradual decrease. This same behaviour is seen in other parts of the

rectified data.

Figure 4.52: Inspection of a set of footsteps

The raw floor vibration signal behaves similarly to those in Figure

4.53 with footsteps increasingly far from the sensor. The decrease in

signal amplitude (energy) correlates with increasing footstep-sensor

distance.

Hypothesis Validation

The final graph shows footsteps quite neatly as they approach and

leave the accelerometer. The hypothesis is therefore valid, and further

discussion features in the Chapter Discussion, Section 4.5.4.

4.5.3 Experiment 2: Sensor Sensitivity Evaluation
Vibration tests reproduce the vibrations undergone by goods during trans-

port. It is a good design practice to ensure the resonant frequencies are

well above any vibration loads the product is likely to experience.

In order to perform these tests, there are different types of machines,

such as the vertical vibration testing systems that only have one degree

of freedom, or vertical, pitch and roll systems which have three degrees
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Parameters

Start amplitude 0.30g

Start frequency 50.00 Hz

End amplitude 0.30g

End frequency 2000.00 Hz

Sweep rate 2.00 Oct/min

Min to Abort -6.00dB

Min Tolerance -3.00dB

Max Tolerance 3.00dB

Max to Abort 6.00dB

Table 4.6: Parameters of Vibrating Pot Test.

of freedom and very accurately reproduce the vibrations suffered during

the transportation of goods [411].

Procedure

Experiment Equipment A vibration shaker is a device used in vibration

testing to excite a structure. The shaker can perform a sinusoidal sweep,

that is, a sinusoid whose frequency varies with time. This will reveal a

resonant frequency, which means the vibration induced displacements

are maximized.

Figure 4.54: Vibrating Pot Experimental Setup

Data Collection The Dynamic Signal Analyser is set up according to a

few parameters. DAQ parameters are listed in Table 4.6.

A sinusoidal sweep runs on a frequency range from 50Hz to 2kHz, with

an average sweep rate of 2 octaves per minute.

Results

The Dynamic Signal analyser shows the z-translational response of the

drone-mounted accelerometer (dark blue curve) as opposed to the drive

accelerometer (light blue curve). Translations on the x and y axes are also

included here (black curves) for comparison.

Response Frequency of Vibration System Of particular note are the

noticeable wobbles in gain below 1kHz, these seem highly correlated

to x and y translational forces. The translational forces on the vibrating

pot can be attributed to an less-than-optimal calibration of the pot. The

z-translation response peaks around 1.8kHz, with no similar response

in the drive accelerometer. Following this, we develop a sensitivity

curve from the ratio between the reference and drive translations. This

sensitivity curve demonstrates a gain change away from the neutral value

of 1:1.
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Figure 4.55: Vibration of Accelerometer During Vibration Pot Experiment

Figure 4.56: Sensitivity deviation accord-

ing to measurement technique [411].

Figure 4.57: Final Sensitivity Curve for UAV Vibration Probe

This sensitivity curve demonstrates the gain over the range of frequencies.

The wobbles remain within a 50% distance from 1, until about 1.5kHz,

increasing to a discontinuity at 1.7kHz. This discontinuity in output

occurs at the peak frequency, suggesting a resonant frequency.

4.5.4 Discussion
A quick demonstration in Experiment 1 shows that that the drone can

carry such an inspection autonomously, by recording data from the

moment that it is landed to the moment that it takes off again. This

opens up to other usecases. For instance, monitoring vibrations as signs

of activity in an area, and leaving the area on command. A UAV is

well-suited to this activity. The UAV can be placed on the side of a road

where it detects the number of cars driving past. It can be placed on

large sewer pipes to monitor the rate of flow. In these two examples,

the UAV has clear advantages in that it can be placed without physical

intervention, and it can remain in place to monitor the situation. Further

studies have proposed solutions [412] using Unmanned Ground Vehicles

(UGVs) for robotic crack inspection and mapping, delamination and

concrete quality assessment, and even a complete mechatronic system
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Table 4.7: Key findings in Chapter 4.

Test Description Findings

Semi-autonomous scan of a zone
DHT11 Sensor Range in Time 0.14% to 6.62 % shift in operating range/reading

DHT11 Sensor Range in Space 0.062-45.556 % of Relative Humidity variation/meter

LDR Sensor Range in Time 0.23 % to 0.69 % shift in operating range/reading

LDR Sensor Range in Space 57.915-270.276 lux variation/meter

Structural Inspection of Vibrations
Range of Vibration Sensing System 0-1.8kHz

Margin of Error up to Natural Frequency 50% margin of error

Figure 4.58: Footsteps as detected by [372]

Figure 4.59: Sensitivity deviation accord-

ing to measurement technique [411].

for high-efficiency bridge inspection. These are foreseeable within the

scope of this work.

Feng et al. [402] envision a scenario in which accelerometers are mounted

onto UAVs, which then are able to gather acceleration signals by self-

attaching to beams under bridges. In order to identify the bridge ac-

celeration response, Feng et al. perform a simulated frequency domain

decomposition (FDD) based on mode shape extraction.

The Accelerometer Mount designed in this section was based to house a

Hand Probe. When used in conventional work, as per Figure 4.59, hand

probes show losses in sensitivity around 1000 Hz. The sensitivity of the

accelerometer remains within a 50% error margin until about 1.5kHz.

With this magnitude of a margin, the data gathered seems comparable to

conventional hand probes.

All in all, an inspection of the results shows that this solution is no less

effective than a hand probe. Quite starkly, the literature lacks mention of

vibration probes on UAVs, and yet the experiment has interesting results.

A UAV that can be placed autonomously to detect human footsteps, could

also monitor other sources of activity on a 1kHz range with no major

losses in sensitivity.

It can safely be said that this experiment has managed to demonstrate a

few elements:

1. High-sampling and high-precision equipment can be of interest to

UAV practitioners.

2. A vibration probe can assist in Structural Inspections.

This also highlights the utility of the data acquisition system employed in

this experiment: the DTS Slice can collect data at a sampling rate of 1kHz,

suggesting that the drone can be used for finely tuned measurements.

With this experiment, there is a case for sensitive equipment that can be

placed autonomously, remotely, and possibly even perform automatic

tasks. In other words, High-sampling and high-precision equipment can

be of interest to UAV practitioners.

At the time of writing, the author has been informed that Alliantech will

apply for a Soleau envelope on the accelerometer mount.

4.6 Conclusion
This chapter marks a distinct turn towards outdoor UAV operation. This

has required the development of a drone flight ecosystem as well as a
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custom environment for integrating new sensors easily. The experiments

in this chapter have expanded the usecase of a drone as we thought it

possible initially: from gathering data with one sensor, the drone could

gather from multiple sensors over a large field. These experiments are

not major advances in the field - but as proof of concepts, they validate

the use of onboard sensing for further industry-ready applications. The

environment monitoring experiment uses common atmospheric sensors,

but it can be extended to air pollution monitoring, a subject that is

currently gaining traction. The vibration probe experiment sets the scene

for automated drone services, as it explores the very specialised task of

vibration monitoring in-situ. A key takeaway are the tests performed

during drone development: as custom drones are developed for various

clients, the very platform involved in operation can be optimised using

AllianTech’s savoir-faire. All in all, this chapter has ventured well into the

current state of the art of drone engineering, and we hope it has offered

insights for innovation at AllianTech.

This automation of the procedure, albeit a proof of concept, is a first step

towards more complex structural inspections. A carrier drone has shown

to streamline the data collection process, by automating different fly-by

procedures, safeguards, and scheduling the data collection. The drone’s

functionalities can be fitted to aid professional practitioners in the course

of their work. Regarding the thesis problematic, these tools allow for

many tasks, and services, to be automated. Drone tasks take on a new

form: as collaborative endeavours, managed smoothly and according to

the needs at hand.



Conclusion 5
Chapter 2: A Testbed Environment for Task
Development

Table 5.1: Key findings in Chapter 2.

Test Description Value

Volume of Flight Arena Localized by Motion Capture 90.46%

Maximum Flight Error Recorded in Hover Test ±72.24 mm ±0.096 rad

We document the design of a development and demonstration testbed

conform to existing research. We describe a procedural task-based archi-

tecture to complement an existing swarm stack. We demonstrate that

the runtime environment is capable of coordinating multiple robots. A

custom high level interface wraps the testbed towards more complex

tasks, and it is demonstrated in a multi-drone choreography.

Drone 2 is further from the arena and exhibits more stability. The drone

that is furthest from the antenna does not have more pose error, and the

hypothesis is rejected.

The drone choreography has shown a functional workspace for multi-

robot groups, whereas a predictable, controllable group of drones with

well-defined goals executed tasks. This culmination of swarm and task

interfaces the infrastructure for new technologies and for prototyping

functionalities. Similarly to other drone laboratories [375][393] and

experimental spaces[360], we’ve put in place a smart ecosystem for

multi-robot development.

The development of a testbed, and all its associated functionality, reveals

the complexity of robotic development. Just as robots demand attention

to detail, so do the frameworks that surround them. As UAV research

continues to grow, so do the number of applications. Flight Testbeds are

quickly becoming a vital element of the drone development process. A

framework for multi-robot task execution is a stepping stone to more com-

plex tasks. It may be expanded to other models of robots, groundbased

or airborne.

Chapter 3: Experimentations for Human-Drone
Interfaces
We investigate a Mixed Reality Interface for the Testbed, as well as

methods of drone Piloting using a Computer Vision algorithm. The

utility of the framework is demonstrated by using it for two different

tasks: quadrotor piloting using computer vision and collision-free flight

of multiple UAVs. Building on existing frameworks like MediaPipe Hands,

and Unity3D, we create perception pipelines for semi-autonomous flight,

and we proceed to evaluate the response latency of these pipelines.
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Table 5.2: Key findings in Chapter 3.

Test Description Result

Gesture Piloting
Gesture Recognition Effectiveness 56.3%

System Response Time 271.0 ms

Mixed Reality Interface
Latency of Pose Transmission (6.68 × 10

−8)𝑒0.19066𝑡
ms

Latency of State Changes 89t ms

System Latency 89(7.5 × 10
−7𝑒0.19066𝑡 + 𝑡)ms

The gesture interface used to pilot the drones is given 56% accuracy.

While the pipeline is based on MediaPipe Hands, the pose classification

was hardcoded, and the software can then be improved with a neural

classifier or an ML pipeline. In practice, the errors were filtered out by

the drone control pipeline.

We have developed a Mixed Reality pipeline that transmits real objects

into a simulator and game engine. While this approach is accurate and

shows high image fidelity, the pose transmission suffers from a linear

(6.68 × 10
−8)𝑒0.19066𝑡

ms delay. Further work might be able to detect the

root cause of this issue.

While the Mixed Reality Interface provides us with a simulated graphics

engine, a communication channel was put in place that would communi-

cate virtual events to the robot swarm. However, the collision experiment

has demonstrated a cumulative delay of 89t ms for a single quadrotor,

and this can only increase with larger swarms and more complex ma-

noeuvres. Since latency is a primary measure for image streaming and

high performance drone tasks, we suggest the exploration of a network

interface more focused on performance, and possibly the integration of

existing simulators like Flightmare within the testbed.

With Human-Drone Interfaces, a new reality is offered to us: one where

drones and humans meet, where drones can somewhat become exten-

sions of our human selves. These experimentations have been a taster of

what is possible, as laying down the framework is a first step towards

a better world. The concept of human extension is fascinating, for it

suggests that the extension is an addition: in that way, a drone assumes

the role of a habilitating tech.

Chapter 4: In Vivo Deployment for Industrial
Environments
Table 5.3: Key findings in Chapter 4.

Test Description Findings

Semi-autonomous scan of a zone
DHT11 Sensor Range in Time 0.14% to 6.62 % shift in operating range/reading

DHT11 Sensor Range in Space 0.062-45.556 % of Relative Humidity variation/meter

LDR Sensor Range in Time 0.23 % to 0.69 % shift in operating range/reading

LDR Sensor Range in Space 57.915-270.276 lux variation/meter

Structural Inspection of Vibrations
Range of Vibration Sensing System 0-1.8kHz

Margin of Error up to Natural Frequency 50% error margin
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Applications are explored for UAVs as Mobile Sensing Platforms, with

high-sampling and high-precision equipment. We design a carrier drone

and Onboard Data Acquisition systems and we put them to practice

along standards defined by industrial practitioners. Two payloads are

tested in outdoor flight, for atmospheric data and vibration data, and

we characterise the sensors used for these tests. A vibration probe is

designed and our tests demonstrate its relevance in the field of mobile

sensing.

Through the means of a payload damping test, the hypothesis is rejected,

insofar as more shock absorption material did not give a lower gain in the

frequency response. Since the objective of this test is about maximising

the damping in the range of interest, Payload A is installed onto the

drone. We suggest that that this test be carried out over a wider range of

materials, and for other types of flight, in order to determine an optimal

damping volume for different drone designs.

The luminosity plot demonstrates very precise readings despite the

drone’s velocity. This is facilitated by rapid data logging at 100Hz. The

fact that the drone was piloted by hand, on an arbitrary path with region

overlaps, illustrates plainly how mobile mapping is a worthwhile tool for

rapid data collection.

The footstep detection tests demonstrate that the drone can indeed record

data with similar quality as that of a planted geophone. This finding

is significant because it demonstrates that an activity like vibration

monitoring is not confined to a manual exercise by practitioners. A drone

can gather data remotely. At the time of writing, Alliantech is compiling

a marketing video for this vibration sensing solution.

We have characterised a drone vibration monitoring solution and we

confirm that our drone can monitor sources of activity on a 1kHz range

with no substantial losses in sensitivity. This finding is significant be-

cause it demonstrates that the drone’s vibration mount is comparable to

professional vibration monitoring methods, and the UAV can therefore

be used as an alternative for structural inspections.

An industrial perspective has revealed the opportunities for drones in

sensor networks: carrying sensors, placing and retrieving sensors, and

overall assisting in the data collection process. This instrumentation

perspective has proven to be full of potential: one flight test fuses sensor

data without much issue, and in another, a vibration probe has shown

its efficacity. This UAV can now be one tool in a toolkit for a company

wishing to take measurements of a zone or to simplify a logistical

operation.

Perspectives
UAVs have shown to be a rapidly expanding market : with new appli-

cations found every day, UAVs are the center of a range of research,

scientific and industrial fields.

Human-Drone Interfaces are still under development: The state of the

art of HDI includes many modalities of interaction, and seeking new and

more intuitive ways of interfacing with drones.
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Finally, remote sensing and structural inspections are benefiting from

the low-cost, time-cutting solutions that come with mobile sensing. In

this paper, we have identified several new approaches to conventional

tasks.
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